मराठी

Show that the Lines 5 − X − 4 = Y − 7 4 = Z + 3 − 5 and X − 8 7 = 2 Y − 8 2 = Z − 5 3 Are Coplanar. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.

उत्तर

\[\text { We know that the lines } \frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1} \text { and } \frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2} are coplanar if \]

\[\begin{vmatrix}x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2\end{vmatrix} = 0\]

The given lines, when converted to their standard forms, are written as:

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{z - 5}{3}\]

Here, x1 = 5; y1 =7; z1 = −3; x2 = 8; y2 = 4; z2 = 5; a1 = 4; b1 = 4; c1 = − 5; a2 = 7; b2 = 1 and c2 = 3
Now,

\[\begin{vmatrix}8 - 5 & 4 - 7 & 5 + 3 \\ 4 & 4 & - 5 \\ 7 & 1 & 3\end{vmatrix}\]

\[= \begin{vmatrix}3 & - 3 & 8 \\ 4 & 4 & - 5 \\ 7 & 1 & 3\end{vmatrix}\]

= 3(12 + 5) + 3(12 + 35) + 8(4 \[-\] 28)

=  51 + 141\[-\]192

= 0

Thus, the given lines are coplanar.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Delhi Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XZ plane. Also find the angle which this line makes with the XZ plane.


Find the equation of a line parallel to x-axis and passing through the origin.


A line passes through the point with position vector \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \] and is in the direction of  \[3 \hat{i} + 4 \hat{j} - 5 \hat{k} .\] Find equations of the line in vector and cartesian form. 


Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text { and }\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\]  are perpendicular to each other. 


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1). 


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 3 \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 5 \hat{j} - 2 \hat{k}  \right) + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\]


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Find the equation of the perpendicular drawn from the point P (2, 4, −1) to the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9} .\]  Also, write down the coordinates of the foot of the perpendicular from P


Find the length of the perpendicular drawn from the point (5, 4, −1) to the line \[\overrightarrow{r} = \hat{i}  + \lambda\left( 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \right) .\]


Find the foot of the perpendicular from (0, 2, 7) on the line \[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2} .\]


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k}  \right) + \lambda\left( 2 \hat{i}  - 5 \hat{j} + 2 \hat{k}  \right) \text{ and }, \overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \mu\left( \hat{i} - \hat{j}  + \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are:  \[\frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} \text{ and } \frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1}\]


Write the cartesian and vector equations of Z-axis.

 

Write the vector equation of a line passing through a point having position vector  \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .


Write the direction cosines of the line \[\frac{x - 2}{2} = \frac{2y - 5}{- 3}, z = 2 .\]


Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

The perpendicular distance of the point P (1, 2, 3) from the line \[\frac{x - 6}{3} = \frac{y - 7}{2} = \frac{z - 7}{- 2}\] is 

 


The projections of a line segment on XY and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are


Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].

 

 The equation of a line is 2x -2 = 3y +1 = 6z -2 find the direction ratios and also find the vector equation of the line. 


If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k. 


Find the joint equation of pair of lines through the origin which is perpendicular to the lines represented by 5x2 + 2xy - 3y2 = 0 


The equation of line passing through (3, -1, 2) and perpendicular to the lines `overline("r")=(hat"i"+hat"j"-hat"k")+lambda(2hat"i"-2hat"j"+hat"k")` and `overline("r")=(2hat"i"+hat"j"-3hat"k")+mu(hat"i"-2hat"j"+2hat"k")` is ______.


The distance of the point (4, 3, 8) from the Y-axis is ______.


P is a point on the line joining the points A(0, 5, −2) and B(3, −1, 2). If the x-coordinate of P is 6, then its z-coordinate is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×