मराठी

Determine Whether the Following Pair of Lines Intersect Or Not: X − 1 3 = Y − 1 − 1 = Z + 1 0 a N D X − 4 2 = Y − 0 0 = Z + 1 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]

बेरीज

उत्तर

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} \text {  and  } \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]

The coordinates of any point on the first line are given by

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} = \lambda\]

\[ \Rightarrow x = 3\lambda + 1\]

\[ y = - \lambda + 1 \]

\[ z = - 1\]

The coordinates of a general point on the first line are

\[\left( 3\lambda + 1, - \lambda + 1, - 1 \right)\]

Also, the coordinates of any point on the second line are given by

\[\frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3} = \mu\]

\[ \Rightarrow x = 2\mu + 4\]

\[ y = 0\]

\[ z = 3\mu - 1\]

The coordinates of a general point on the second line are

\[\left( 2\mu + 4, 0, 3\mu - 1 \right)\]

If the lines intersect, then they have a common point. So, for some values of \[\lambda \text{ and } \mu\] we must have 

\[3\lambda + 1 = 2\mu + 4, - \lambda + 1 = 0, - 1 = 3\mu - 1\]

\[ \Rightarrow 3\lambda - 2\mu = 3 . . . (1)\]

\[ \lambda = 1 . . . (2)\]

\[ \mu = 0 . . . (3)\]

\[\text{ From (2) and (3), we get } \]

\[\lambda = 1\]

\[\mu = 0\]

\[\text{ Substituting }  \lambda = 1 \text{ and }\mu= 0 \text{ in }(1),\text{ we get } \]

\[LHS = 3\lambda - 2\mu\]

\[ = 3\left( 1 \right) - 2\left( 0 \right)\]

\[ = 3\]

\[ = RHS\]

\[\text{ Since } \lambda = 1 \text{ and } \mu = 0 \text { satisfy (1), the lines intersect }. \]

\[\text{ Substituting } \lambda = 1 \text{ and }\mu = 0\text { in the coordinates of a general point on the first line, we get} \]

\[x = 4\]

\[y = 0 \]

\[z = - 1\]

\[\text{ Hence, the given lines intersect at } \left( 4, 0, - 1 \right) .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Straight Line in Space - Exercise 28.3 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 28 Straight Line in Space
Exercise 28.3 | Q 6.3 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.


Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and is parallel to the line `(x+3)/3=(4-y)/5=(z+8)/6`


Find the vector and Cartesian equations of the line through the point (1, 2, −4) and perpendicular to the two lines. 

`vecr=(8hati-19hatj+10hatk)+lambda(3hati-16hatj+7hatk) " and "vecr=(15hati+29hatj+5hatk)+mu(3hati+8hatj-5hatk)`

 

 


 

A line passes through (2, −1, 3) and is perpendicular to the lines `vecr=(hati+hatj-hatk)+lambda(2hati-2hatj+hatk) and vecr=(2hati-hatj-3hatk)+mu(hati+2hatj+2hatk)` . Obtain its equation in vector and Cartesian from. 

 

Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by `(x+3)/3 = (y-4)/5 = (z+8)/6`.


Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).


Show that the lines `(x-5)/7 = (y + 2)/(-5) = z/1` and `x/1 = y/2 = z/3` are perpendicular to each other.


The cartesian equations of a line are x = ay + bz = cy + d. Find its direction ratios and reduce it to vector form. 


Find the cartesian and vector equations of a line which passes through the point (1, 2, 3) and is parallel to the line  \[\frac{- x - 2}{1} = \frac{y + 3}{7} = \frac{2z - 6}{3} .\] 


Find the equation of a line parallel to x-axis and passing through the origin.


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 3 \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 5 \hat{j} - 2 \hat{k}  \right) + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\]


Find the angle between the following pair of line:

\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} \text  { and }  \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]


Find the angle between the following pair of line:

\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]


Find the angle between the pairs of lines with direction ratios proportional to  2, 2, 1 and 4, 1, 8 .

 


Find the angle between the pairs of lines with direction ratios proportional to   abc and b − cc − aa − b.


Find the equations of the line passing through the point (2, 1, 3) and perpendicular to the lines  \[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \text{  and  } \frac{x}{- 3} = \frac{y}{2} = \frac{z}{5}\]


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


If the coordinates of the points ABCD be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD


Find the direction cosines of the line 

\[\frac{x + 2}{2} = \frac{2y - 7}{6} = \frac{5 - z}{6}\]  Also, find the vector equation of the line through the point A(−1, 2, 3) and parallel to the given line.  


Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{           and                  } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\]   intersect. Find their point of intersection.


Find the shortest distance between the following pairs of lines whose vector are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} + \hat{j} - \hat{k} + \mu\left( 3 \hat{i} - 5 \hat{j} + 2 \hat{k} \right)\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 5}{4} = \frac{y - 7}{- 5} = \frac{z + 3}{- 5} \text{ and } \frac{x - 8}{7} = \frac{y - 7}{1} = \frac{z - 5}{3}\]


Find the shortest distance between the following pairs of parallel lines whose equations are:  \[\overrightarrow{r} = \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( \hat{i}  - \hat{j} + \hat{k} \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i}  - \hat{j} - \hat{k} \right) + \mu\left( - \hat{i} + \hat{j} - \hat{k} \right)\]


Write the cartesian and vector equations of Y-axis.

 

Write the cartesian and vector equations of Z-axis.

 

Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

Write the formula for the shortest distance between the lines 

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and }  \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\] 

 


Write the condition for the lines  \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and  } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.


Find the Cartesian equations of the line which passes through the point (−2, 4 , −5) and is parallel to the line \[\frac{x + 3}{3} = \frac{4 - y}{5} = \frac{z + 8}{6} .\]


The lines `x/1 = y/2 = z/3 and (x - 1)/-2 = (y - 2)/-4 = (z - 3)/-6` are


Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.


The separate equations of the lines represented by `3x^2 - 2sqrt(3)xy - 3y^2` = 0 are ______ 


Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.

`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×