मराठी

Find the angle between the following pairs of lines: x + 4 3 = y − 1 5 = z + 3 4 a n d x + 1 1 = y − 4 1 = z − 5 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the following pair of line:

\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} \text  { and }  \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]

बेरीज

उत्तर

\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} and \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]

Let

\[\overrightarrow{b_1}\] and \[\overrightarrow{b_2}\] be vectors parallel to the given line.

\[\overrightarrow{b_1}\] = 3 \hat{i} + 5 \hat{j} + 4 \hat{k} \]

\[\overrightarrow{b_2}\] = \hat{i} + \hat{j}+ 2 \hat{k} \]

If θ is the angle between the given line, then

\[\cos \theta = \frac{\overrightarrow{b_1} . \overrightarrow{b_2}}{\left| \overrightarrow{b_1} \right| \left| \overrightarrow{b_2} \right|}\]

\[ = \frac{\left( 3 \hat{i} + 5 \hat{j} + 4 \hat{k} \right) . \left( \hat{i} + \hat{j} + 2 \hat{k} \right)}{\sqrt{3^2 + 5^2 + 4^2} \sqrt{1^2 + 1^2 + 2^2}}\]

\[ = \frac{3 + 5 + 8}{10\sqrt{3}}\]

\[ = \frac{8}{5\sqrt{3}}\]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{8}{5\sqrt{3}} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Straight Line in Space - Exercise 28.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 28 Straight Line in Space
Exercise 28.2 | Q 9.1 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.

 


The Cartestation equation of  line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.


 

A line passes through (2, −1, 3) and is perpendicular to the lines `vecr=(hati+hatj-hatk)+lambda(2hati-2hatj+hatk) and vecr=(2hati-hatj-3hatk)+mu(hati+2hatj+2hatk)` . Obtain its equation in vector and Cartesian from. 

 

 

Find the value of p, so that the lines `l_1:(1-x)/3=(7y-14)/p=(z-3)/2 and l_2=(7-7x)/3p=(y-5)/1=(6-z)/5 ` are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, – 4) and parallel to line l1.

 

Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines

`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`


Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.


Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the equation of a line parallel to x-axis and passing through the origin.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).


Find the vector equation of a line which is parallel to the vector \[2 \hat{i} - \hat{j} + 3 \hat{k}\]  and which passes through the point (5, −2, 4). Also, reduce it to cartesian form.


The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]  Find a vector equation for the line.


Show that the three lines with direction cosines \[\frac{12}{13}, \frac{- 3}{13}, \frac{- 4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{- 4}{13}, \frac{12}{13}\] are mutually perpendicular. 


Show that the line through the points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and, (1, 2, 5).


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1). 


Find the angle between the following pair of line:

\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]


Find the angle between the pairs of lines with direction ratios proportional to  1, 2, −2 and −2, 2, 1 .


Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\] 


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2. 


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k}  \right) + \lambda\left( 2 \hat{i}  - 5 \hat{j} + 2 \hat{k}  \right) \text{ and }, \overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \mu\left( \hat{i} - \hat{j}  + \hat{k}  \right)\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} - \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \overrightarrow{r} = \left( 4 \hat{i} - \hat{k}  \right) + \mu\left( 2 \hat{i}  + 3 \hat{k} \right)\] 


Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(i) (0, 0, 0) and (1, 0, 2) 


Write the cartesian and vector equations of X-axis.

 

Write the cartesian and vector equations of Y-axis.

 

Write the cartesian and vector equations of Z-axis.

 

Write the vector equation of a line passing through a point having position vector  \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .


Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.

 

Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

Write the vector equation of a line given by \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]

 


Find the angle between the lines 

\[\vec{r} = \left( 2 \hat{i}  - 5 \hat{j}  + \hat{k}  \right) + \lambda\left( 3 \hat{i}  + 2 \hat{j}  + 6 \hat{k}  \right)\] and \[\vec{r} = 7 \hat{i} - 6 \hat{k}  + \mu\left( \hat{i}  + 2 \hat{j}  + 2 \hat{k}  \right)\] 


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


The direction ratios of the line perpendicular to the lines \[\frac{x - 7}{2} = \frac{y + 17}{- 3} = \frac{z - 6}{1} \text{ and }, \frac{x + 5}{1} = \frac{y + 3}{2} = \frac{z - 4}{- 2}\] are proportional to


If a line makes angle \[\frac{\pi}{3} \text{ and } \frac{\pi}{4}\]  with x-axis and y-axis respectively, then the angle made by the line with z-axis is


Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].

 

The separate equations of the lines represented by `3x^2 - 2sqrt(3)xy - 3y^2` = 0 are ______ 


If 2x + y = 0 is one of the line represented by 3x2 + kxy + 2y2 = 0 then k = ______ 


Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×