मराठी

Find the Angle Between the Pairs of Lines with Direction Ratios Proportional To A, B, C And B − C, C − A, A − B. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the pairs of lines with direction ratios proportional to   abc and b − cc − aa − b.

बेरीज

उत्तर

abc and b − cc − aa − b

\[\text{ Let } \overrightarrow{m_1} \text{   and    } \overrightarrow{m_2} \text{ be vectors parallel to the given two lines } . \]

\[\text{ Then, the angle between the two lines is same as the angle between } \overrightarrow{m_1} \text{ and } \overrightarrow{m_2} . \]

\[\text{ Now } , \]

\[ \overrightarrow{m_1} = \text{ Vector parallel to the line having direction ratios proportional to a, b, c} \]

\[ \overrightarrow{m_2} = \text{ Vector parallel to the line having direction ratios proportional to b - c, c - a, a - b} \]

\[ \therefore \overrightarrow{m_1} = a \hat{i} + b \hat{j} + c \hat{k}  \text{ and } \overrightarrow{m_2} = \left( b - c \right)  \hat{ i }+ \left( c - a \right) \hat{j} + \left( a - b \right) \hat{k}  \]

\[\text{ Let }  \theta \text{ be the angle between the lines } . \]

\[Now, \]

\[\cos \theta = \frac{\overrightarrow{m_1} . \overrightarrow{m_2}}{\left| \overrightarrow{m_1} \right| \left| \overrightarrow{m_2} \right|}\]

\[ = \frac{\left( a \hat{i}  + b \hat{j} + c \hat{k} \right) . \left\{ \left( b - c \right) \hat{i} + \left( c - a \right) \hat{j} + \left( a - b \right) \hat{k} \right\}}{\sqrt{a^2 + b^2 + c^2} \sqrt{\left( b - c \right)^2 + \left( c - a \right)^2 + \left( a - b \right)^2}}\]

\[ = \frac{ab - ac + bc - ba + ca - cb}{\sqrt{a^2 + b^2 + c^2} \sqrt{\left( b - c \right)^2 + \left( c - a \right)^2 + \left( a - b \right)^2}}\]

\[ = 0\]

\[ \Rightarrow \theta = \frac{\pi}{2}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Straight Line in Space - Exercise 28.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 28 Straight Line in Space
Exercise 28.2 | Q 10.4 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.


If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


 

A line passes through (2, −1, 3) and is perpendicular to the lines `vecr=(hati+hatj-hatk)+lambda(2hati-2hatj+hatk) and vecr=(2hati-hatj-3hatk)+mu(hati+2hatj+2hatk)` . Obtain its equation in vector and Cartesian from. 

 

Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.


Show that the three lines with direction cosines `12/13, (-3)/13, (-4)/13;  4/13, 12/13, 3/13;  3/13, (-4)/13, 12/13 ` are mutually perpendicular.


Find the equation of a line parallel to x-axis and passing through the origin.


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are  \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\]  Also, reduce the equation obtained in vector form.


Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 3 \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 5 \hat{j} - 2 \hat{k}  \right) + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\]


Find the angle between the following pair of line:

\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} \text  { and }  \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]


Find the angle between the following pair of line:

\[\frac{- x + 2}{- 2} = \frac{y - 1}{7} = \frac{z + 3}{- 3} \text{  and  } \frac{x + 2}{- 1} = \frac{2y - 8}{4} = \frac{z - 5}{4}\]


Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\] 


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Show that the lines  \[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} \text{          and         } \frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4}\] intersect and find their point of intersection. 


Prove that the lines through A (0, −1, −1) and B (4, 5, 1) intersects the line through C (3, 9, 4) and D (−4, 4, 4). Also, find their point of intersection. 


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Find the foot of the perpendicular drawn from the point  \[\hat{i} + 6 \hat{j} + 3 \hat{k} \]  to the line  \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k}  \right) .\]  Also, find the length of the perpendicular


Find the foot of the perpendicular from (1, 2, −3) to the line \[\frac{x + 1}{2} = \frac{y - 3}{- 2} = \frac{z}{- 1} .\]


By computing the shortest distance determine whether the following pairs of lines intersect or not  : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} - \hat{j}  \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]


Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines

 (1, 3, 0) and (0, 3, 0)


Write the cartesian and vector equations of Z-axis.

 

Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

Write the value of λ for which the lines  \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\]  are perpendicular to each other.


The cartesian equations of a line AB are  \[\frac{2x - 1}{\sqrt{3}} = \frac{y + 2}{2} = \frac{z - 3}{3} .\]   Find the direction cosines of a line parallel to AB


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


If the direction ratios of a line are proportional to 1, −3, 2, then its direction cosines are

 


Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].

 

Find the value of p for which the following lines are perpendicular : 

`(1-x)/3 = (2y-14)/(2p) = (z-3)/2 ; (1-x)/(3p) = (y-5)/1 = (6-z)/5`


Find the joint equation of pair of lines through the origin which is perpendicular to the lines represented by 5x2 + 2xy - 3y2 = 0 


The distance of the point (4, 3, 8) from the Y-axis is ______.


Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.

`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


P is a point on the line joining the points A(0, 5, −2) and B(3, −1, 2). If the x-coordinate of P is 6, then its z-coordinate is ______.


Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×