मराठी

If the Direction Ratios of a Line Are Proportional to 1, −3, 2, Then Its Direction Cosines Are (A) 1 √ 14 , − 3 √ 14 , 2 √ 14 (B) 1 √ 14 , 2 √ 14 , 3 √ 14 (C) − 1 √ 14 , 3 √ 14 , 2 √ 14 - Mathematics

Advertisements
Advertisements

प्रश्न

If the direction ratios of a line are proportional to 1, −3, 2, then its direction cosines are

 

पर्याय

  •  \[\frac{1}{\sqrt{14}}, - \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}\] 

  •  \[\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\] 

  •  \[- \frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}\] 

  •  \[- \frac{1}{\sqrt{14}}, - \frac{2}{\sqrt{14}}, - \frac{3}{\sqrt{14}}\]

MCQ

उत्तर

 \[\frac{1}{\sqrt{14}}, - \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}\] 

The direction ratios of the line are proportional to 1, -3, 2 .

∴  The direction cosines of the line are

\[\frac{1}{\sqrt{1^2 + \left( - 3 \right)^2 + 2^2}}, \frac{- 3}{\sqrt{1^2 + \left( - 3 \right)^2 + 2^2}}, \frac{2}{\sqrt{1^2 + \left( - 3 \right)^2 + 2^2}} \]

\[ = \frac{1}{\sqrt{14}}, \frac{- 3}{\sqrt{14}}, \frac{2}{\sqrt{14}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Straight Line in Space - MCQ [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 28 Straight Line in Space
MCQ | Q 9 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and is parallel to the line `(x+3)/3=(4-y)/5=(z+8)/6`


Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XZ plane. Also find the angle which this line makes with the XZ plane.


If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


Show that the line through the points (4, 7, 8) (2, 3, 4) is parallel to the line through the points (−1, −2, 1), (1, 2, 5).


Show that the lines `(x-5)/7 = (y + 2)/(-5) = z/1` and `x/1 = y/2 = z/3` are perpendicular to each other.


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.


Show that the points whose position vectors are  \[- 2 \hat{i} + 3 \hat{j} , \hat{i} + 2 \hat{j} + 3 \hat{k}  \text{ and }  7 \text{ i}  - \text{ k} \]  are collinear.


Find the angle between the following pair of line:

\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{- 3} \text { and } \frac{x + 3}{- 1} = \frac{y - 5}{8} = \frac{z - 1}{4}\]


Find the angle between the following pair of line:

\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{  and  } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]


Find the angle between the pairs of lines with direction ratios proportional to  1, 2, −2 and −2, 2, 1 .


Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the  other one is obtained by joining the points (3, 1, 4) and (7, 2, 12). 


Find the equation of the line passing through the point (1, −1, 1) and perpendicular to the lines joining the points (4, 3, 2), (1, −1, 0) and (1, 2, −1), (2, 1, 1).


Prove that the lines through A (0, −1, −1) and B (4, 5, 1) intersects the line through C (3, 9, 4) and D (−4, 4, 4). Also, find their point of intersection. 


Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3). 


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 3 \hat{i} + 5 \hat{j} + 7 \hat{k} \right) + \lambda\left( \hat{i} - 2 \hat{j} + 7 \hat{k} \right) \text{ and } \overrightarrow{r} = - \hat{i} - \hat{j} - \hat{k}  + \mu\left( 7 \hat{i}  - 6 \hat{j}  + \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 1 - t \right) \hat{i} + \left( t - 2 \right) \hat{j} + \left( 3 - t \right) \hat{k}  \text{ and }  \overrightarrow{r} = \left( s + 1 \right) \hat{i}  + \left( 2s - 1 \right) \hat{j}  - \left( 2s + 1 \right) \hat{k} \]


By computing the shortest distance determine whether the following pairs of lines intersect or not  : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} - \hat{j}  \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} - \hat{j} - \hat{k} + \mu\left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right)\]


Find the distance between the lines l1 and l2 given by  \[\overrightarrow{r} = \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( 2 \hat{i}  + 3 \hat{j}  + 6 \hat{k}  \right) \text{ and } , \overrightarrow{r} = 3 \hat{i} + 3 \hat{j}  - 5 \hat{k}  + \mu\left( 2 \hat{i} + 3 \hat{j}  + 6 \hat{k}  \right)\]

 

 


Write the cartesian and vector equations of X-axis.

 

Write the cartesian and vector equations of Y-axis.

 

Write the vector equation of a line passing through a point having position vector  \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .


Write the angle between the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z - 2}{1} \text{ and } \frac{x - 1}{1} = \frac{y}{2} = \frac{z - 1}{3} .\]


Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.

 

Write the formula for the shortest distance between the lines 

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and }  \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\] 

 


Write the vector equation of a line given by \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]

 


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


The direction ratios of the line perpendicular to the lines \[\frac{x - 7}{2} = \frac{y + 17}{- 3} = \frac{z - 6}{1} \text{ and }, \frac{x + 5}{1} = \frac{y + 3}{2} = \frac{z - 4}{- 2}\] are proportional to


The direction ratios of the line x − y + z − 5 = 0 = x − 3y − 6 are proportional to

 

 


Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`


If 2x + y = 0 is one of the line represented by 3x2 + kxy + 2y2 = 0 then k = ______ 


Find the separate equations of the lines given by x2 + 2xy tan α − y2 = 0 


The distance of the point (4, 3, 8) from the Y-axis is ______.


Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.


Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×