मराठी

Find the Angle Between Two Lines, One of Which Has Direction Ratios 2, 2, 1 While the Other One is Obtained by Joining the Points (3, 1, 4) and (7, 2, 12). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the  other one is obtained by joining the points (3, 1, 4) and (7, 2, 12). 

बेरीज

उत्तर

The direction ratios of the line joining the points (3, 1, 4) and (7, 2, 12) are proportional to 4, 1, 8.

Let

\[\overrightarrow{m_1} \text{ and } \overrightarrow{m_2}\]  be vectors parallel to the lines having direction ratios proportional to 2, 2, 1 and 4, 1, 8.

Now, 

\[\overrightarrow{b_1} = 2 \hat{i} + 2 \hat{j}  + \hat{k}  \]

\[ \overrightarrow{b_2} = 4 \hat{i}  + \hat{j} + 8 \hat{k} \]

If θ is the angle between the given lines, then 

\[\cos \theta = \frac{\overrightarrow{m_1} . \overrightarrow{m_2}}{\left| \overrightarrow{m_1} \right| \left| \overrightarrow{m_2} \right|}\]

\[ = \frac{\left( 2 \hat{i} + 2 \hat{j} + \hat{k}  \right) . \left( 4 \hat{i}  + \hat{j}  + 8 \hat{k}  \right)}{\sqrt{2^2 + 2^2 + 1^2} \sqrt{4^2 + 1^2 + 8^2}}\]

\[ = \frac{8 + 2 + 8}{3 \times 9}\]

\[ = \frac{2}{3}\]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{2}{3} \right)\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Straight Line in Space - Exercise 28.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 28 Straight Line in Space
Exercise 28.2 | Q 11 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.


Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.


Find the equation of the line in vector and in Cartesian form that passes through the point with position vector `2hati -hatj+4hatk`  and is in the direction `hati + 2hatj - hatk`.


Find the equation of a line parallel to x-axis and passing through the origin.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).


Find the vector equation of the line passing through the points (−1, 0, 2) and (3, 4, 6).


ABCD is a parallelogram. The position vectors of the points AB and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k}  \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\]  Find the vector equation of the line BD. Also, reduce it to cartesian form.


The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]  Find a vector equation for the line.


Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are  \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\]  Also, reduce the equation obtained in vector form.


Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.


Find the cartesian and vector equations of a line which passes through the point (1, 2, 3) and is parallel to the line  \[\frac{- x - 2}{1} = \frac{y + 3}{7} = \frac{2z - 6}{3} .\] 


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Show that the lines  \[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} \text{          and         } \frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4}\] intersect and find their point of intersection. 


Determine whether the following pair of lines intersect or not: 

\[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} - \hat{j} \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\] 


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Show that the lines \[\vec{r} = 3 \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \vec{r} = 5 \hat{i} - 2 \hat{j}  + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] are intersecting. Hence, find their point of intersection.


Find the shortest distance between the following pairs of lines whose vector equations are: \[\vec{r} = 3 \hat{i} + 8 \hat{j} + 3 \hat{k}  + \lambda\left( 3 \hat{i}  - \hat{j}  + \hat{k}  \right) \text{ and }  \vec{r} = - 3 \hat{i}  - 7 \hat{j}  + 6 \hat{k}  + \mu\left( - 3 \hat{i}  + 2 \hat{j}  + 4 \hat{k} \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{3} = \frac{y - 2}{1}; z = 2\]


Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines

 (1, 3, 0) and (0, 3, 0)


Write the vector equations of the following lines and hence determine the distance between them  \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z + 4}{6} \text{ and } \frac{x - 3}{4} = \frac{y - 3}{6} = \frac{z + 5}{12}\]


Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and }  \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]


Write the cartesian and vector equations of X-axis.

 

Write the vector equation of a line passing through a point having position vector  \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .


Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.

 

Write the coordinate axis to which the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 1}{0}\]  is  perpendicular.


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


The lines `x/1 = y/2 = z/3 and (x - 1)/-2 = (y - 2)/-4 = (z - 3)/-6` are


The angle between the lines

\[\frac{x - 1}{1} = \frac{y - 1}{1} = \frac{z - 1}{2} \text{ and }, \frac{x - 1}{- \sqrt{3} - 1} = \frac{y - 1}{\sqrt{3} - 1} = \frac{z - 1}{4}\] is 

The lines  \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3} \text { and } \frac{x - 1}{- 2} = \frac{y - 2}{- 4} = \frac{z - 3}{- 6}\] 

 


The shortest distance between the lines  \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\] 

 

 

 

 


Choose correct alternatives:

If the equation 4x2 + hxy + y2 = 0 represents two coincident lines, then h = _______


If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then


The separate equations of the lines represented by `3x^2 - 2sqrt(3)xy - 3y^2` = 0 are ______ 


The distance of the point (4, 3, 8) from the Y-axis is ______.


Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.


Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.

`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×