Advertisements
Advertisements
प्रश्न
ABCD is a parallelogram. The position vectors of the points A, B and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\] Find the vector equation of the line BD. Also, reduce it to cartesian form.
उत्तर
We know that the position vector of the mid-point of `vec a` and `vec b` is \[\frac{\vec{a} + \vec{b}}{2}\] Let the position vector of point D be \[x \hat{i} + y \hat{j} + z \hat{k} \] Position vector of mid-point of A and C = Position vector of mid-point of B and D
\[\therefore \frac{\left( 4 \hat{i} + 5 \hat{j} - 10 \hat{k} \right) + \left( - \hat{i} + 2 \hat{j} + \hat{k} \right)}{2} = \frac{\left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \left( x \hat{i}+ y \hat{j} + z \hat{k} \right)}{2}\]
\[ \Rightarrow \frac{3}{2} \hat{i} + \frac{7}{2} \hat{j} - \frac{9}{2} \hat{k}= \left( \frac{x + 2}{2} \right) \hat{i} + \left( \frac{- 3 + y}{2} \right) \hat{j} + \left( \frac{4 + z}{2} \right) \hat{k} \]
\[\text{ Comparing the coefficient of } \hat{i} ,\hat{j} \text{ and } \hat{k} , \text{ we get } \]
\[\frac{x + 2}{2} = \frac{3}{2}\]
\[ \Rightarrow x = 1\]
\[\frac{- 3 + y}{2} = \frac{7}{2}\]
\[ \Rightarrow y = 10\]
\[ \frac{4 + z}{2} = - \frac{9}{2}\]
\[ \Rightarrow z = - 13\]
\[\text{ Position vector of point D } = \hat{i} + 10 \hat{j} - 13 \hat{k} \]The vector equation of line BD passing through the points with position vectors
\[\vec{a}\] (B) and \[\vec{b}\] (D) is
\[\vec{r} = \vec{a} + \lambda \left( \vec{b} - \vec{a} \right)\]
Here,
\[\vec{a} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \]
\[ \vec{b} = \hat{i} + 10 \hat{j} - 13 \hat{k} \]
Vector equation of the required line is
\[\vec{r} = \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda\left\{ \left( \hat{i} + 10 \hat{j} - 13 \hat{k} \right) - \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) \right\}\]
\[ \Rightarrow \vec{r} = \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda \left( - \hat{i} + 13 \hat{j} - 17 \hat{k} \right) . . . (1) \]
\[\text{ Here }, \lambda \text{ is a parameter } . \]
Reducing (1) to cartesian form, we get
\[x \hat{i} + y \hat{ j} + z \hat{k} = \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda \left( - \hat{i} + 13 \hat{j} - 17 \hat{k} \right) [\text{ Putting } r^\to = x \hat{i} + y \hat{j} + z \hat{k} \text
{ in } (1)]\]
\[ \Rightarrow x \hat {i} + y \hat{j} + z \hat{k} = \left( 2 - \lambda \right) \hat{i} + \left( - 3 + 13\lambda \right) \hat{j} + \left( 4 - 17\lambda \right) \hat{k}\]
\[\text{ Comparing the coefficients of } \hat{i} , \hat{j} \text{ and } \hat{k} , \text{ we get } \]
\[x = 2 - \lambda, y = - 3 + 13\lambda, z = 4 - 17\lambda\]
\[ \Rightarrow \frac{x - 2}{- 1} = \lambda, \frac{y + 3}{13} = \lambda, \frac{z - 4}{- 17} = \lambda\]
\[ \Rightarrow \frac{x - 2}{- 1} = \frac{y + 3}{13} = \frac{z - 4}{- 17} = \lambda\]
\[ \Rightarrow \frac{x - 2}{1} = \frac{y + 3}{- 13} = \frac{z - 4}{17} = - \lambda\]
\[ \text{ Hence, the cartesian form of (1) is } \]
\[\frac{x - 2}{1} = \frac{y + 3}{- 13} = \frac{z - 4}{17}\]
APPEARS IN
संबंधित प्रश्न
If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.
Find the vector and Cartesian equations of the line through the point (1, 2, −4) and perpendicular to the two lines.
`vecr=(8hati-19hatj+10hatk)+lambda(3hati-16hatj+7hatk) " and "vecr=(15hati+29hatj+5hatk)+mu(3hati+8hatj-5hatk)`
Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.
Find the equation of the line in vector and in Cartesian form that passes through the point with position vector `2hati -hatj+4hatk` and is in the direction `hati + 2hatj - hatk`.
Find the vector and the Cartesian equations of the line that passes through the points (3, −2, −5), (3, −2, 6).
Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\] Reduce the corresponding equation in cartesian from.
The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\] Find a vector equation for the line.
Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text { and }\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.
Find the angle between the following pair of line:
\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]
Find the angle between the following pair of line:
\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]
Find the angle between the pairs of lines with direction ratios proportional to 2, 2, 1 and 4, 1, 8 .
Find the angle between the pairs of lines with direction ratios proportional to 1, 2, −2 and −2, 2, 1 .
Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\]
Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2.
Find the value of λ so that the following lines are perpendicular to each other. \[\frac{x - 5}{5\lambda + 2} = \frac{2 - y}{5} = \frac{1 - z}{- 1}, \frac{x}{1} = \frac{2y + 1}{4\lambda} = \frac{1 - z}{- 3}\]
Find the direction cosines of the line
\[\frac{x + 2}{2} = \frac{2y - 7}{6} = \frac{5 - z}{6}\] Also, find the vector equation of the line through the point A(−1, 2, 3) and parallel to the given line.
A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D.
Find the equation of the perpendicular drawn from the point P (2, 4, −1) to the line \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9} .\] Also, write down the coordinates of the foot of the perpendicular from P.
Find the foot of the perpendicular from (1, 2, −3) to the line \[\frac{x + 1}{2} = \frac{y - 3}{- 2} = \frac{z}{- 1} .\]
Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD.
Find the coordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, −1, 3) and C(2, −3, −1).
Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]
Write the cartesian and vector equations of Y-axis.
Cartesian equations of a line AB are \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\] Write the direction ratios of a line parallel to AB.
Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.
Write the value of λ for which the lines \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\] are perpendicular to each other.
Write the formula for the shortest distance between the lines
\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\]
If a line makes angles α, β and γ with the axes respectively, then cos 2 α + cos 2 β + cos 2 γ =
The lines \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3} \text { and } \frac{x - 1}{- 2} = \frac{y - 2}{- 4} = \frac{z - 3}{- 6}\]
The shortest distance between the lines \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\]
The equation of a line is 2x -2 = 3y +1 = 6z -2 find the direction ratios and also find the vector equation of the line.
The equation 4x2 + 4xy + y2 = 0 represents two ______
The equation of line passing through (3, -1, 2) and perpendicular to the lines `overline("r")=(hat"i"+hat"j"-hat"k")+lambda(2hat"i"-2hat"j"+hat"k")` and `overline("r")=(2hat"i"+hat"j"-3hat"k")+mu(hat"i"-2hat"j"+2hat"k")` is ______.
Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.
Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.
The lines `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` and `(x - 3)/1 = (y - k)/2 = z/1` intersect each other at point