हिंदी

Abcd is a Parallelogram. the Position Vectors of the Points A, B and C Are Respectively,Find the Vector Equation of the Line Bd. Also, Reduce It to Cartesian Form. - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a parallelogram. The position vectors of the points AB and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k}  \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\]  Find the vector equation of the line BD. Also, reduce it to cartesian form.

उत्तर

We know that the position vector of the mid-point of `vec a` and `vec b` is \[\frac{\vec{a} + \vec{b}}{2}\] Let the position vector of point D be  \[x \hat{i} + y \hat{j} + z \hat{k} \] Position vector of mid-point of A and C = Position vector of mid-point of B and D

\[\therefore \frac{\left( 4 \hat{i} + 5 \hat{j} - 10 \hat{k} \right) + \left( - \hat{i} + 2 \hat{j} + \hat{k} \right)}{2} = \frac{\left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \left( x \hat{i}+ y \hat{j} + z \hat{k} \right)}{2}\]

\[ \Rightarrow \frac{3}{2} \hat{i} + \frac{7}{2} \hat{j} - \frac{9}{2} \hat{k}= \left( \frac{x + 2}{2} \right) \hat{i} + \left( \frac{- 3 + y}{2} \right) \hat{j} + \left( \frac{4 + z}{2} \right) \hat{k} \]

\[\text{ Comparing the coefficient of } \hat{i} ,\hat{j}  \text{ and }  \hat{k} , \text{ we get } \]

\[\frac{x + 2}{2} = \frac{3}{2}\]

\[ \Rightarrow x = 1\]

\[\frac{- 3 + y}{2} = \frac{7}{2}\]

\[ \Rightarrow y = 10\]  

\[ \frac{4 + z}{2} = - \frac{9}{2}\]

\[ \Rightarrow z = - 13\]

\[\text{ Position vector of point D } = \hat{i} + 10 \hat{j} - 13 \hat{k} \]The vector equation of line BD passing through the points with position vectors

\[\vec{a}\] (B) and \[\vec{b}\] (D) is 

\[\vec{r} = \vec{a} + \lambda \left( \vec{b} - \vec{a} \right)\]

Here,

\[\vec{a} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \]

\[ \vec{b} = \hat{i} + 10 \hat{j} - 13 \hat{k} \]

Vector equation of the required line is

\[\vec{r} = \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda\left\{ \left( \hat{i} + 10 \hat{j} - 13 \hat{k} \right) - \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) \right\}\]

\[ \Rightarrow \vec{r} = \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda \left( - \hat{i} + 13 \hat{j} - 17 \hat{k}  \right) . . . (1) \]

\[\text{ Here }, \lambda \text{ is a parameter } . \]

Reducing (1) to cartesian form, we get

\[x \hat{i} + y \hat{ j} + z \hat{k} = \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda \left( - \hat{i} + 13 \hat{j} - 17 \hat{k} \right) [\text{ Putting } r^\to = x \hat{i} + y \hat{j} + z \hat{k}  \text
{ in } (1)]\]

\[ \Rightarrow x \hat {i} + y \hat{j} + z \hat{k} = \left( 2 - \lambda \right) \hat{i} + \left( - 3 + 13\lambda \right) \hat{j} + \left( 4 - 17\lambda \right) \hat{k}\]

\[\text{ Comparing the coefficients of }  \hat{i} , \hat{j}  \text{ and } \hat{k}  , \text{ we get } \]

\[x = 2 - \lambda, y = - 3 + 13\lambda, z = 4 - 17\lambda\]

\[ \Rightarrow \frac{x - 2}{- 1} = \lambda, \frac{y + 3}{13} = \lambda, \frac{z - 4}{- 17} = \lambda\]

\[ \Rightarrow \frac{x - 2}{- 1} = \frac{y + 3}{13} = \frac{z - 4}{- 17} = \lambda\]

\[ \Rightarrow \frac{x - 2}{1} = \frac{y + 3}{- 13} = \frac{z - 4}{17} = - \lambda\]

\[ \text{ Hence, the cartesian form of (1) is } \]

\[\frac{x - 2}{1} = \frac{y + 3}{- 13} = \frac{z - 4}{17}\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Straight Line in Space - Exercise 28.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 28 Straight Line in Space
Exercise 28.1 | Q 5 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.


The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.


 

Find the value of p, so that the lines `l_1:(1-x)/3=(7y-14)/p=(z-3)/2 and l_2=(7-7x)/3p=(y-5)/1=(6-z)/5 ` are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, – 4) and parallel to line l1.

 

Show that the line through the points (4, 7, 8) (2, 3, 4) is parallel to the line through the points (−1, −2, 1), (1, 2, 5).


Find the equation of the line in vector and in Cartesian form that passes through the point with position vector `2hati -hatj+4hatk`  and is in the direction `hati + 2hatj - hatk`.


Find the vector and the Cartesian equations of the line that passes through the points (3, −2, −5), (3, −2, 6).

 


Find the equation of a line parallel to x-axis and passing through the origin.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]  Find a vector equation for the line.


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text { and }\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\]  are perpendicular to each other. 


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 3 \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 5 \hat{j} - 2 \hat{k}  \right) + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\]


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]

 


Find the angle between the following pair of line:

\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]


Find the angle between the following pair of line:

\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{  and  } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]


Find the angle between the pairs of lines with direction ratios proportional to  2, 2, 1 and 4, 1, 8 .

 


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Find the value of λ so that the following lines are perpendicular to each other. \[\frac{x - 5}{5\lambda + 2} = \frac{2 - y}{5} = \frac{1 - z}{- 1}, \frac{x}{1} = \frac{2y + 1}{4\lambda} = \frac{1 - z}{- 3}\]


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\] 


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Find the perpendicular distance of the point (1, 0, 0) from the line  \[\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z + 10}{8}.\] Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} - \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \overrightarrow{r} = \left( 4 \hat{i} - \hat{k}  \right) + \mu\left( 2 \hat{i}  + 3 \hat{k} \right)\] 


Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]


Write the cartesian and vector equations of Z-axis.

 

Write the direction cosines of the line \[\frac{x - 2}{2} = \frac{2y - 5}{- 3}, z = 2 .\]


Write the formula for the shortest distance between the lines 

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and }  \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\] 

 


Write the vector equation of a line given by \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]

 


Find the angle between the lines 

\[\vec{r} = \left( 2 \hat{i}  - 5 \hat{j}  + \hat{k}  \right) + \lambda\left( 3 \hat{i}  + 2 \hat{j}  + 6 \hat{k}  \right)\] and \[\vec{r} = 7 \hat{i} - 6 \hat{k}  + \mu\left( \hat{i}  + 2 \hat{j}  + 2 \hat{k}  \right)\] 


If a line makes angle \[\frac{\pi}{3} \text{ and } \frac{\pi}{4}\]  with x-axis and y-axis respectively, then the angle made by the line with z-axis is


The projections of a line segment on XY and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are


The lines  \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3} \text { and } \frac{x - 1}{- 2} = \frac{y - 2}{- 4} = \frac{z - 3}{- 6}\] 

 


Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].

 

Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`


If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k. 


If 2x + y = 0 is one of the line represented by 3x2 + kxy + 2y2 = 0 then k = ______ 


Equation of a line passing through (1, 1, 1) and parallel to z-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×