Advertisements
Advertisements
प्रश्न
Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).
उत्तर
We know that the vector equation of a line passing through the points with position vectors `vec a` and `vec b` is \[\vec{r} = \vec{a} + \lambda \left( \vec{b} - \vec{a} \right)\] , where \[\lambda\] is a scalar.
Here,
\[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} \]
\[ \vec{b} = 2 \hat{i} + \hat{j} + \hat{ k} \]
Vector equation of the required line is
\[\vec{r} = \left( \hat{ i } + 2 \hat{j} - \hat{k} \right) + \lambda\left\{ \left( 2 \hat{i} + \hat{j} + \hat{k} \right) - \left( \hat{i} + 2 \hat{j} - \hat{k} \right) \right\}\]
\[ \Rightarrow \vec{r} = \left( \hat{i} + 2 \hat{j} - \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + 2 \hat{k} \right) . . . (1) \]
\[\text{ Here }, \lambda \text{ is a parameter .} \]
Reducing (1) to cartesian form, we get
\[x \hat{i} + y \hat{j} + z \hat{k} = \left( \hat{i} + 2 \hat{j} - \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + 2 \hat{k} \right) [\text{ Putting } \vec{r} = x \hat{i} + y \hat{j} + z \hat{k} \text{ in } (1)]\]
\[ \Rightarrow x \hat{i} + y \hat{j} + z \hat{k} = \left( 1 + \lambda \right) \hat{i} + \left( 2 - \lambda \right) \hat{j} + \left( - 1 + 2\lambda \right) \hat{k} \]
\[\text{ Comparing the coefficients of } \hat{i} , \hat{j} \text{ and } \hat{k} , \text{ we get }\]
\[x = 1 + \lambda, y = 2 - \lambda, z = - 1 + 2\lambda\]
\[ \Rightarrow x - 1 = \lambda, \frac{y - 2}{- 1} = \lambda, \frac{z + 1}{2} = \lambda\]
\[ \Rightarrow \frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z + 1}{2} = \lambda\]
\[\text{ Hence, the cartesian form of (1) is} \]
\[\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z + 1}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and is parallel to the line `(x+3)/3=(4-y)/5=(z+8)/6`
The Cartestation equation of line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.
Find the value of p, so that the lines `l_1:(1-x)/3=(7y-14)/p=(z-3)/2 and l_2=(7-7x)/3p=(y-5)/1=(6-z)/5 ` are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, – 4) and parallel to line l1.
Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines
`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`
Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Show that the lines `(x-5)/7 = (y + 2)/(-5) = z/1` and `x/1 = y/2 = z/3` are perpendicular to each other.
Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`
Find the vector equation of a line which is parallel to the vector \[2 \hat{i} - \hat{j} + 3 \hat{k}\] and which passes through the point (5, −2, 4). Also, reduce it to cartesian form.
Find the vector equation of a line passing through (2, −1, 1) and parallel to the line whose equations are \[\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3} .\]
Show that the three lines with direction cosines \[\frac{12}{13}, \frac{- 3}{13}, \frac{- 4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{- 4}{13}, \frac{12}{13}\] are mutually perpendicular.
Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the through the points (0, 3, 2) and (3, 5, 6).
Find the angle between the following pair of line:
\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]
Find the angle between the following pair of line:
\[\frac{5 - x}{- 2} = \frac{y + 3}{1} = \frac{1 - z}{3} \text{ and } \frac{x}{3} = \frac{1 - y}{- 2} = \frac{z + 5}{- 1}\]
Find the angle between the pairs of lines with direction ratios proportional to 1, 2, −2 and −2, 2, 1 .
Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\]
Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2.
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{2 \lambda} = \frac{z - 3}{2} \text{ and } \frac{x - 1}{3\lambda} = \frac{y - 1}{1} = \frac{z - 6}{- 5}\] are perpendicular, find the value of λ.
A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D.
Find the length of the perpendicular drawn from the point (5, 4, −1) to the line \[\overrightarrow{r} = \hat{i} + \lambda\left( 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \right) .\]
Find the foot of the perpendicular from (0, 2, 7) on the line \[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2} .\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 3 \hat{i} + 5 \hat{j} + 7 \hat{k} \right) + \lambda\left( \hat{i} - 2 \hat{j} + 7 \hat{k} \right) \text{ and } \overrightarrow{r} = - \hat{i} - \hat{j} - \hat{k} + \mu\left( 7 \hat{i} - 6 \hat{j} + \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \lambda - 1 \right) \hat{i} + \left( \lambda + 1 \right) \hat{j} - \left( 1 + \lambda \right) \hat{k} \text{ and } \overrightarrow{r} = \left( 1 - \mu \right) \hat{i} + \left( 2\mu - 1 \right) \hat{j} + \left( \mu + 2 \right) \hat{k} \]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 8 + 3\lambda \right) \hat{i} - \left( 9 + 16\lambda \right) \hat{j} + \left( 10 + 7\lambda \right) \hat{k} \]\[\overrightarrow{r} = 15 \hat{i} + 29 \hat{j} + 5 \hat{k} + \mu\left( 3 \hat{i} + 8 \hat{j} - 5 \hat{k} \right)\]
Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = - 4 \hat{i} - \hat{k} + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k} \right)\]
Write the cartesian and vector equations of X-axis.
Write the vector equation of a line passing through a point having position vector \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .
Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.
Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.
If the equations of a line AB are
\[\frac{3 - x}{1} = \frac{y + 2}{- 2} = \frac{z - 5}{4},\] write the direction ratios of a line parallel to AB.
Find the Cartesian equations of the line which passes through the point (−2, 4 , −5) and is parallel to the line \[\frac{x + 3}{3} = \frac{4 - y}{5} = \frac{z + 8}{6} .\]
The perpendicular distance of the point P (1, 2, 3) from the line \[\frac{x - 6}{3} = \frac{y - 7}{2} = \frac{z - 7}{- 2}\] is
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].
Find the value of p for which the following lines are perpendicular :
`(1-x)/3 = (2y-14)/(2p) = (z-3)/2 ; (1-x)/(3p) = (y-5)/1 = (6-z)/5`
Find the value of λ for which the following lines are perpendicular to each other:
`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`
If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k.
Choose correct alternatives:
The difference between the slopes of the lines represented by 3x2 - 4xy + y2 = 0 is 2
Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______