हिंदी

Find the Length of the Perpendicular Drawn from the Point (5, 4, −1) to the Line → R = ^ I + λ ( 2 ^ I + 9 ^ J + 5 ^ K ) . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the length of the perpendicular drawn from the point (5, 4, −1) to the line \[\overrightarrow{r} = \hat{i}  + \lambda\left( 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \right) .\]

योग

उत्तर

Let the point (5, 4, -1)   be P and the the point through which the line passes be Q (1, 0, 0).
The line is parallel to the vector  \[\overrightarrow{b} = 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \] 

Now,  \[\overrightarrow{PQ} = - 4 \hat{i} - 4 \hat{j} + \hat{k} \] 

\[\therefore \overrightarrow{b} \times \overrightarrow{PQ} = \begin{vmatrix}\hat{i} & \hat{j}  & \hat{k} \\ 2 & 9 & 5 \\ - 4 & - 4 & 1\end{vmatrix}\]

\[ = 29 \hat{i} - 22 \hat{j} + 28 \hat{k} \]

\[ \Rightarrow \left| \overrightarrow{b} \times \overrightarrow{PQ} \right| = \sqrt{{29}^2 + \left( - 22 \right)^2 + {28}^2}\]

\[ = \sqrt{841 + 484 + 784}\]

\[ = \sqrt{2109}\]

\[\left| \overrightarrow{b} \right| = \sqrt{2^2 + 9^2 + 5^2}\]

\[ = \sqrt{4 + 81 + 25}\]

\[ = \sqrt{110}\]

\[d = \frac{\left| \overrightarrow{b} \times \overrightarrow{PQ} \right|}{\left| \overrightarrow{b} \right|}\]

\[ = \frac{\sqrt{2109}}{\sqrt{110}}\]

\[ = \sqrt{\frac{2109}{110}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Straight Line in Space - Exercise 28.4 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 28 Straight Line in Space
Exercise 28.4 | Q 7 | पृष्ठ ३०

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

The Cartestation equation of  line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.


If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).


Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).


The cartesian equation of a line are 3x + 1 = 6y − 2 = 1 − z. Find the fixed point through which it passes, its direction ratios and also its vector equation.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1). 


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 3 \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 5 \hat{j} - 2 \hat{k}  \right) + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\]


Find the angle between the following pair of line:

\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} \text  { and }  \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]


Find the angle between the pairs of lines with direction ratios proportional to 5, −12, 13 and −3, 4, 5


Find the angle between the pairs of lines with direction ratios proportional to  2, 2, 1 and 4, 1, 8 .

 


Find the angle between the pairs of lines with direction ratios proportional to   abc and b − cc − aa − b.


Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\] 


Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line  \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{           and                  } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\]   intersect. Find their point of intersection.


Prove that the lines through A (0, −1, −1) and B (4, 5, 1) intersects the line through C (3, 9, 4) and D (−4, 4, 4). Also, find their point of intersection. 


A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \lambda - 1 \right) \hat{i} + \left( \lambda + 1 \right) \hat{j}  - \left( 1 + \lambda \right) \hat{k}  \text{ and }  \overrightarrow{r} = \left( 1 - \mu \right) \hat{i}  + \left( 2\mu - 1 \right) \hat{j}  + \left( \mu + 2 \right) \hat{k} \]


Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{3} = \frac{y - 2}{1}; z = 2\]


By computing the shortest distance determine whether the following pairs of lines intersect or not  : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} - \hat{j}  \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines

 (1, 3, 0) and (0, 3, 0)


Write the cartesian and vector equations of Z-axis.

 

Write the vector equation of a line passing through a point having position vector  \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .


Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.

 

Find the Cartesian equations of the line which passes through the point (−2, 4 , −5) and is parallel to the line \[\frac{x + 3}{3} = \frac{4 - y}{5} = \frac{z + 8}{6} .\]


The direction ratios of the line x − y + z − 5 = 0 = x − 3y − 6 are proportional to

 

 


If the direction ratios of a line are proportional to 1, −3, 2, then its direction cosines are

 


The straight line \[\frac{x - 3}{3} = \frac{y - 2}{1} = \frac{z - 1}{0}\] is


Find the value of p for which the following lines are perpendicular : 

`(1-x)/3 = (2y-14)/(2p) = (z-3)/2 ; (1-x)/(3p) = (y-5)/1 = (6-z)/5`


If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k. 


The separate equations of the lines represented by `3x^2 - 2sqrt(3)xy - 3y^2` = 0 are ______ 


The equation 4x2 + 4xy + y2 = 0 represents two ______ 


P is a point on the line joining the points A(0, 5, −2) and B(3, −1, 2). If the x-coordinate of P is 6, then its z-coordinate is ______.


Find the vector equation of the lines passing through the point having position vector `(-hati - hatj + 2hatk)` and parallel to the line `vecr = (hati + 2hatj + 3hatk) + λ(3hati + 2hatj + hatk)`.


Find the equations of the diagonals of the parallelogram PQRS whose vertices are P(4, 2, – 6), Q(5, – 3, 1), R(12, 4, 5) and S(11, 9, – 2). Use these equations to find the point of intersection of diagonals.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×