हिंदी

Show that the Lines X + 1 3 = Y + 3 5 = Z + 5 7 a N D X − 2 1 = Y − 4 3 = Z − 6 5 Intersect. Find Their Point of Intersection. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{           and                  } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\]   intersect. Find their point of intersection.

योग

उत्तर

The coordinates of any point on the first line are given by 

\[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} = \lambda\]

\[ \Rightarrow x = 3\lambda - 1\]

\[ y = 5\lambda - 3\]

\[ z = 7\lambda - 5\] 

The coordinates of a general point on the first line are 

\[\left( 3\lambda - 1, 5\lambda - 3, 7\lambda - 5 \right)\] 

The coordinates of any point on the second line are given by 

\[\frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5} = \mu\]

\[ \Rightarrow x = \mu + 2\]

\[ y = 3\mu + 4 \]

\[ z = 5\mu + 6\]

The coordinates of a general point on the second line are

\[\left( \mu + 2, 3\mu + 4, 5\mu + 6 \right)\] 

If the lines intersect, then they have a common point. So, for some values of  \[\lambda \text{ and } \mu\] we must have ,

\[3\lambda - 1 = \mu + 2, 5\lambda - 3 = 3\mu + 4, 7\lambda - 5 = 5\mu + 6\]

\[ \Rightarrow 3\lambda - \mu = 3 . . . (1)\]

\[ 5\lambda - 3\mu = 7 . . . (2)\]

\[ 7\lambda - 5\mu = 11 . . . (3)\]

\[\text{ Solving (1) and (2), we get } \]

\[\lambda = \frac{1}{2} \]

\[\mu = - \frac{3}{2}\]

\[\text { Substituting }  \lambda = \frac{1}{2} \text{ and } \mu = - \frac{3}{2} \text { in (3), we get } \]

\[LHS = 7\lambda - 5\mu\]

\[ = 7\left( \frac{1}{2} \right) - 5\left( - \frac{3}{2} \right)\]

\[ = 11\]

\[ = RHS\]

\[\text{ Since } \lambda = \frac{1}{2} \text{ and } \mu = - \frac{3}{2} \text{ satisfy (3), the given lines intersect .}  \]

\[\text{ Substituting the value of       } \lambda \text{ in the general coordinates of the first line, we get } \]

\[x = \frac{1}{2}\]

\[y = - \frac{1}{2}\]

\[z = - \frac{3}{2}\]

\[\text{ Hence, the given lines intersect at point }  \left( \frac{1}{2}, - \frac{1}{2}, - \frac{3}{2} \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Straight Line in Space - Exercise 28.3 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 28 Straight Line in Space
Exercise 28.3 | Q 3 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.


The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.

 


Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XZ plane. Also find the angle which this line makes with the XZ plane.


Find the vector and Cartesian equations of the line through the point (1, 2, −4) and perpendicular to the two lines. 

`vecr=(8hati-19hatj+10hatk)+lambda(3hati-16hatj+7hatk) " and "vecr=(15hati+29hatj+5hatk)+mu(3hati+8hatj-5hatk)`

 

 


If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).


Show that the lines `(x-5)/7 = (y + 2)/(-5) = z/1` and `x/1 = y/2 = z/3` are perpendicular to each other.


A line passes through the point with position vector \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \] and is in the direction of  \[3 \hat{i} + 4 \hat{j} - 5 \hat{k} .\] Find equations of the line in vector and cartesian form. 


ABCD is a parallelogram. The position vectors of the points AB and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k}  \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\]  Find the vector equation of the line BD. Also, reduce it to cartesian form.


Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Find the vector equation of a line passing through (2, −1, 1) and parallel to the line whose equations are \[\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3} .\]


Show that the line through the points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and, (1, 2, 5).


Find the cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by  \[\frac{x + 3}{3} = \frac{y - 4}{5} = \frac{z + 8}{6} .\]


Find the equation of a line parallel to x-axis and passing through the origin.


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 3 \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 5 \hat{j} - 2 \hat{k}  \right) + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\]


Find the angle between the following pair of line:

\[\frac{5 - x}{- 2} = \frac{y + 3}{1} = \frac{1 - z}{3} \text{  and  } \frac{x}{3} = \frac{1 - y}{- 2} = \frac{z + 5}{- 1}\]


Find the equation of the line passing through the point (2, −1, 3) and parallel to the line  \[\overrightarrow{r} = \left( \hat{i} - 2 \hat{j} + \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} - 5 \hat{k} \right) .\]


Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2. 


Prove that the lines through A (0, −1, −1) and B (4, 5, 1) intersects the line through C (3, 9, 4) and D (−4, 4, 4). Also, find their point of intersection. 


Determine whether the following pair of lines intersect or not:  

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]


Find the coordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, −1, 3) and C(2, −3, −1).      


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 3 \hat{i} + 5 \hat{j} + 7 \hat{k} \right) + \lambda\left( \hat{i} - 2 \hat{j} + 7 \hat{k} \right) \text{ and } \overrightarrow{r} = - \hat{i} - \hat{j} - \hat{k}  + \mu\left( 7 \hat{i}  - 6 \hat{j}  + \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\] 


Write the cartesian and vector equations of Z-axis.

 

Write the vector equation of a line passing through a point having position vector  \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .


Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.

 

Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

If the equations of a line AB are 

\[\frac{3 - x}{1} = \frac{y + 2}{- 2} = \frac{z - 5}{4},\] write the direction ratios of a line parallel to AB


The direction ratios of the line x − y + z − 5 = 0 = x − 3y − 6 are proportional to

 

 


If the direction ratios of a line are proportional to 1, −3, 2, then its direction cosines are

 


Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.


If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then


Choose correct alternatives:

The difference between the slopes of the lines represented by 3x2 - 4xy + y2 = 0 is 2


The equation 4x2 + 4xy + y2 = 0 represents two ______ 


Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.


Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.

`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


The lines `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` and `(x - 3)/1 = (y - k)/2 = z/1` intersect each other at point


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×