Advertisements
Advertisements
प्रश्न
Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\] Reduce the corresponding equation in cartesian from.
उत्तर
We know that the vector equation of a line passing through a point with position vector \[\vec{a}\] and parallel to the vector \[\vec{b}\] is \[\vec{r} = \vec{a} + \lambda \vec{b}\]
Here,
\[\vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} \]
\[ \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k} \]
Vector equation of the required line is
\[\vec{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda \left( \hat{i} - 2 \hat{j} + 3 \hat{k} \right) . . . (1)\]
\[\text{Here }, \lambda \text{ is a parameter } . \]
Reducing (1) to cartesian form, we get
\[x \hat{i} + y \hat{j} + z \hat{k} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda \left( \hat{i} - 2 \hat{j} + 3 \hat{k} \right) [\text{ Putting } \vec{r} = x \hat{i} + y \hat{j} + z \hat{k} \text{ in } (1)]\]
\[ \Rightarrow x \hat{i} + y \hat{j} + z \hat{k} = \left( 1 + \lambda \right) \hat{i} + \left( 2 - 2\lambda \right) \hat{j} + \left( 3 + 3\lambda \right) \hat{k} \]
\[\text{ Comparing the coefficients of } \hat{i} , \hat{j} \text{ and } \hat{ k} , \text{ we get} \]
\[x = 1 + \lambda, y = 2 - 2\lambda, z = 3 + 3\lambda\]
\[ \Rightarrow x - 1 = \lambda, \frac{y - 2}{- 2} = \lambda, \frac{z - 3}{3} = \lambda\]
\[ \Rightarrow \frac{x - 1}{1} = \frac{y - 2}{- 2} = \frac{z - 3}{3} = \lambda\]
\[\text{ Hence, the cartesian form of } (1) \hspace{0.167em} \text { is } \]
\[\frac{x - 1}{1} = \frac{y - 2}{- 2} = \frac{z - 3}{3}\]
APPEARS IN
संबंधित प्रश्न
If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.
Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines
`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`
Find the vector and the Cartesian equations of the line that passes through the points (3, −2, −5), (3, −2, 6).
Find the equation of a line parallel to x-axis and passing through the origin.
Find the vector and Cartesian equations of a line passing through (1, 2, –4) and perpendicular to the two lines `(x - 8)/3 = (y + 19)/(-16) = (z - 10)/7` and `(x - 15)/3 = (y - 29)/8 = (z - 5)/(-5)`
Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]
Find the vector equation of the line passing through the points (−1, 0, 2) and (3, 4, 6).
Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\] Also, reduce the equation obtained in vector form.
Find the equation of a line parallel to x-axis and passing through the origin.
Find the angle between the pairs of lines with direction ratios proportional to a, b, c and b − c, c − a, a − b.
Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]
Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{ and } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]
Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.
Prove that the lines through A (0, −1, −1) and B (4, 5, 1) intersects the line through C (3, 9, 4) and D (−4, 4, 4). Also, find their point of intersection.
Determine whether the following pair of lines intersect or not:
\[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]
Determine whether the following pair of lines intersect or not:
\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]
Show that the lines \[\vec{r} = 3 \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \vec{r} = 5 \hat{i} - 2 \hat{j} + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] are intersecting. Hence, find their point of intersection.
Find the perpendicular distance of the point (1, 0, 0) from the line \[\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z + 10}{8}.\] Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.
A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D.
Find the length of the perpendicular drawn from the point (5, 4, −1) to the line \[\overrightarrow{r} = \hat{i} + \lambda\left( 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \right) .\]
Find the foot of the perpendicular from (1, 2, −3) to the line \[\frac{x + 1}{2} = \frac{y - 3}{- 2} = \frac{z}{- 1} .\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k} \right) + \lambda\left( 2 \hat{i} - 5 \hat{j} + 2 \hat{k} \right) \text{ and }, \overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \mu\left( \hat{i} - \hat{j} + \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose vector are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} + \hat{j} - \hat{k} + \mu\left( 3 \hat{i} - 5 \hat{j} + 2 \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\]
Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} \text{ and } \frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1}\]
Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.
Write the coordinate axis to which the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 1}{0}\] is perpendicular.
Write the value of λ for which the lines \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\] are perpendicular to each other.
Find the angle between the lines
\[\vec{r} = \left( 2 \hat{i} - 5 \hat{j} + \hat{k} \right) + \lambda\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] and \[\vec{r} = 7 \hat{i} - 6 \hat{k} + \mu\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right)\]
The lines `x/1 = y/2 = z/3 and (x - 1)/-2 = (y - 2)/-4 = (z - 3)/-6` are
The angle between the lines
The projections of a line segment on X, Y and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].
Find the value of λ for which the following lines are perpendicular to each other:
`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`
Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______
If 2x + y = 0 is one of the line represented by 3x2 + kxy + 2y2 = 0 then k = ______
The lines `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` and `(x - 3)/1 = (y - k)/2 = z/1` intersect each other at point