हिंदी

Find the Vector and Cartesian Equations of a Line Passing Through (1, 2, –4) and Perpendicular to the Two Lines `(X - 8)By3 = (Y + 19)By(-16) = (Z - 10)By7` and `(X - 15)By3 = (Y - 29)By8 = (Z - 5)By(-5)` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vector and Cartesian equations of a line passing through (1, 2, –4) and perpendicular to the two lines `(x - 8)/3 = (y + 19)/(-16) = (z - 10)/7` and `(x - 15)/3 = (y - 29)/8 = (z - 5)/(-5)`

उत्तर

The given lines are

`(x - 8)/3 = (y + 19)/(-16) = (z - 10)/7`..............(1)

and `(x - 15)/3 = (y - 29)/8 = (z - 5)/(-5)`............(2)

Let abc be the direction ratios of the required line.

Since the required line is perpendicular to (1) and (2), we have

3a − 16b + 7c = 0 .....(3)

and 3a + 8b - 5c = 0.....(4)

Solving (3) and (4) by the method of cross multiplication, we have

`a/(80-56) = b/(21+15) = c/(24 + 48)`

`=>a/24 = b/36 = c/72`

`=> a/2 = b/3 = c/6`

Thus, the required line has the direction ratio 2, 3, 6.

Thus, the Cartesian equation of the required line is

`(x - 1)/2 =  (y - 2)/3 = (x + 4)/6`

Also, the vector equation of the required line is

`vecr = (hati + 2hatj - 4hatk) + lambda(2hati + 3hatj + 6hatk)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.

 


If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


Show that the three lines with direction cosines `12/13, (-3)/13, (-4)/13;  4/13, 12/13, 3/13;  3/13, (-4)/13, 12/13 ` are mutually perpendicular.


Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).


Find the cartesian and vector equations of a line which passes through the point (1, 2, 3) and is parallel to the line  \[\frac{- x - 2}{1} = \frac{y + 3}{7} = \frac{2z - 6}{3} .\] 


Find the angle between the following pair of line:

\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{- 3} \text { and } \frac{x + 3}{- 1} = \frac{y - 5}{8} = \frac{z - 1}{4}\]


Find the angle between the following pair of line:

\[\frac{5 - x}{- 2} = \frac{y + 3}{1} = \frac{1 - z}{3} \text{  and  } \frac{x}{3} = \frac{1 - y}{- 2} = \frac{z + 5}{- 1}\]


Show that the lines \[\frac{x - 1}{3} = \frac{y + 1}{2} = \frac{z - 1}{5} \text{           and                } \frac{x + 2}{4} = \frac{y - 1}{3} = \frac{z + 1}{- 2}\]  do not intersect. 


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\] 


Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3). 


A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D


Find the equation of the perpendicular drawn from the point P (2, 4, −1) to the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9} .\]  Also, write down the coordinates of the foot of the perpendicular from P


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 8 + 3\lambda \right) \hat{i} - \left( 9 + 16\lambda \right) \hat{j} + \left( 10 + 7\lambda \right) \hat{k} \]\[\overrightarrow{r} = 15 \hat{i} + 29 \hat{j} + 5 \hat{k} + \mu\left( 3 \hat{i}  + 8 \hat{j} - 5 \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{- 1} = \frac{y + 2}{1} = \frac{z - 3}{- 2} \text{ and } \frac{x - 1}{1} = \frac{y + 1}{2} = \frac{z + 1}{- 2}\]


Find the shortest distance between the following pairs of parallel lines whose equations are:  \[\overrightarrow{r} = \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( \hat{i}  - \hat{j} + \hat{k} \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i}  - \hat{j} - \hat{k} \right) + \mu\left( - \hat{i} + \hat{j} - \hat{k} \right)\]


Find the distance between the lines l1 and l2 given by  \[\overrightarrow{r} = \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( 2 \hat{i}  + 3 \hat{j}  + 6 \hat{k}  \right) \text{ and } , \overrightarrow{r} = 3 \hat{i} + 3 \hat{j}  - 5 \hat{k}  + \mu\left( 2 \hat{i} + 3 \hat{j}  + 6 \hat{k}  \right)\]

 

 


Write the vector equation of a line passing through a point having position vector  \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .


The angle between the lines

\[\frac{x - 1}{1} = \frac{y - 1}{1} = \frac{z - 1}{2} \text{ and }, \frac{x - 1}{- \sqrt{3} - 1} = \frac{y - 1}{\sqrt{3} - 1} = \frac{z - 1}{4}\] is 

Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.


Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`


The separate equations of the lines represented by `3x^2 - 2sqrt(3)xy - 3y^2` = 0 are ______ 


Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______ 


The distance of the point (4, 3, 8) from the Y-axis is ______.


Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.


Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.


Find the vector equation of the lines passing through the point having position vector `(-hati - hatj + 2hatk)` and parallel to the line `vecr = (hati + 2hatj + 3hatk) + λ(3hati + 2hatj + hatk)`.


The lines `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` and `(x - 3)/1 = (y - k)/2 = z/1` intersect each other at point


Equation of a line passing through (1, 1, 1) and parallel to z-axis is ______.


A line passes through the point (2, – 1, 3) and is perpendicular to the lines `vecr = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `vecr = (2hati - hatj - 3hatk) + μ(hati + 2hatj + 2hatk)` obtain its equation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×