हिंदी

Find the Cartesian and Vector Equations of a Line Which Passes Through the Point (1, 2, 3) and is Parallel to the Line − X − 2 1 = Y + 3 7 = 2 Z − 6 3 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the cartesian and vector equations of a line which passes through the point (1, 2, 3) and is parallel to the line  \[\frac{- x - 2}{1} = \frac{y + 3}{7} = \frac{2z - 6}{3} .\] 

योग

उत्तर

We have \[\frac{- x - 2}{1} = \frac{y + 3}{7} = \frac{2z - 6}{3} .\] 

It can be re-written as 

\[\frac{x + 2}{- 1} = \frac{y + 3}{7} = \frac{z - 3}{\left( \frac{3}{2} \right)}\]

\[ = \frac{x + 2}{- 2} = \frac{y + 3}{14} = \frac{z - 3}{3}\]

This shows that the given line passes through the point  (-2, -3,3) and its direction ratios are proportional to  -2,14,3

Thus, the parallel vector is  \[\overrightarrow{b} = - 2 \hat{i} + 14 \hat{j} + 3 \hat{k} \]

We know that the vector equation of a line passing through a point with position vector

\[\overrightarrow{a} \]and parallel to the vector \[\overrightarrow{b} \] is  \[\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}\]

Here,

\[\overrightarrow{a} = \hat{i} + 2 \hat{j} + 3 \hat{k}  \]

\[ \overrightarrow{b} = - 2 \hat{i} + 14 \hat{j} + 3 \hat{k}\]

Vector equation of the required line is 

\[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda \left( - 2 \hat{i} + 14 \hat{j} + 3 \hat{k}  \right) . . . (1)\]

\[\text{ Here } , \lambda \text { is a parameter } . \]

Reducing (1) to cartesian form, we get 

\[x \hat{i} + y \hat{j} + z \hat{k} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k}  \right) + \lambda \left( - 2 \hat{i} + 14 \hat{j} + 3 \hat{k} \right) [\text { Putting }  \overrightarrow{r} = x \hat{i}  + y \hat{j} + z k \text{ in } (1)]\]

\[ \Rightarrow x \hat{ i }+ y \hat{j} + z \hat{k} = \left( 1 - 2\lambda \right) \hat{i} + \left( 2 + 14 \lambda \right) \hat{j} + \left( 3 + 3\lambda \right) \hat{k} \]

\[\text{ Comparing the coefficients of } \hat{i} , \hat{j} \text{ and } \hat{k} , \text{we get } \]

\[x = 1 - 2\lambda, y = 2 + 14 \lambda, z = 3 + 3\lambda\]

\[ \Rightarrow \frac{x - 1}{- 2} = \lambda, \frac{y - 2}{14} = \lambda, \frac{z - 3}{3} = \lambda\]

\[ \Rightarrow \frac{x - 1}{- 2} = \frac{y - 2}{14} = \frac{z - 3}{3} = \lambda\]

\[\text{ Hence, the cartesian form of (1) is } \]

\[\frac{x - 1}{- 2} = \frac{y - 2}{14} = \frac{z - 3}{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Straight Line in Space - Exercise 28.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 28 Straight Line in Space
Exercise 28.1 | Q 16 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

 

Find the value of p, so that the lines `l_1:(1-x)/3=(7y-14)/p=(z-3)/2 and l_2=(7-7x)/3p=(y-5)/1=(6-z)/5 ` are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, – 4) and parallel to line l1.

 

Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.


Show that the three lines with direction cosines `12/13, (-3)/13, (-4)/13;  4/13, 12/13, 3/13;  3/13, (-4)/13, 12/13 ` are mutually perpendicular.


Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the equation of the line in vector and in Cartesian form that passes through the point with position vector `2hati -hatj+4hatk`  and is in the direction `hati + 2hatj - hatk`.


Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).


Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are  \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\]  Also, reduce the equation obtained in vector form.


Find the direction cosines of the line  \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\]  Also, reduce it to vector form. 


Find the points on the line \[\frac{x + 2}{3} = \frac{y + 1}{2} = \frac{z - 3}{2}\]  at a distance of 5 units from the point P (1, 3, 3).


Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.


Find the angle between the following pair of line:

\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{- 3} \text { and } \frac{x + 3}{- 1} = \frac{y - 5}{8} = \frac{z - 1}{4}\]


Find the angle between the pairs of lines with direction ratios proportional to   abc and b − cc − aa − b.


Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\] 


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.


If the coordinates of the points ABCD be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD


Find the direction cosines of the line 

\[\frac{x + 2}{2} = \frac{2y - 7}{6} = \frac{5 - z}{6}\]  Also, find the vector equation of the line through the point A(−1, 2, 3) and parallel to the given line.  


A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D


Find the foot of the perpendicular from (0, 2, 7) on the line \[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2} .\]


Find the coordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, −1, 3) and C(2, −3, −1).      


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 3 \hat{i} + 5 \hat{j} + 7 \hat{k} \right) + \lambda\left( \hat{i} - 2 \hat{j} + 7 \hat{k} \right) \text{ and } \overrightarrow{r} = - \hat{i} - \hat{j} - \hat{k}  + \mu\left( 7 \hat{i}  - 6 \hat{j}  + \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \lambda - 1 \right) \hat{i} + \left( \lambda + 1 \right) \hat{j}  - \left( 1 + \lambda \right) \hat{k}  \text{ and }  \overrightarrow{r} = \left( 1 - \mu \right) \hat{i}  + \left( 2\mu - 1 \right) \hat{j}  + \left( \mu + 2 \right) \hat{k} \]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} - \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \overrightarrow{r} = \left( 4 \hat{i} - \hat{k}  \right) + \mu\left( 2 \hat{i}  + 3 \hat{k} \right)\] 


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 5}{4} = \frac{y - 7}{- 5} = \frac{z + 3}{- 5} \text{ and } \frac{x - 8}{7} = \frac{y - 7}{1} = \frac{z - 5}{3}\]


Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]


Cartesian equations of a line AB are  \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\]   Write the direction ratios of a line parallel to AB.


Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.

 

The cartesian equations of a line AB are  \[\frac{2x - 1}{\sqrt{3}} = \frac{y + 2}{2} = \frac{z - 3}{3} .\]   Find the direction cosines of a line parallel to AB


If the equations of a line AB are 

\[\frac{3 - x}{1} = \frac{y + 2}{- 2} = \frac{z - 5}{4},\] write the direction ratios of a line parallel to AB


Find the value of p for which the following lines are perpendicular : 

`(1-x)/3 = (2y-14)/(2p) = (z-3)/2 ; (1-x)/(3p) = (y-5)/1 = (6-z)/5`


Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`


If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then


Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______ 


Find the joint equation of pair of lines through the origin which is perpendicular to the lines represented by 5x2 + 2xy - 3y2 = 0 


Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.

`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


The lines `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` and `(x - 3)/1 = (y - k)/2 = z/1` intersect each other at point


Find the equations of the diagonals of the parallelogram PQRS whose vertices are P(4, 2, – 6), Q(5, – 3, 1), R(12, 4, 5) and S(11, 9, – 2). Use these equations to find the point of intersection of diagonals.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×