हिंदी

If the Coordinates of the Points A, B, C, D Be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) Respectively, Then Find the Angle Between the Lines Ab and Cd. - Mathematics

Advertisements
Advertisements

प्रश्न

If the coordinates of the points ABCD be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD

उत्तर

The direction ratios of AB and CD are proportional to 3, 3, 4 and 6, 6, 8, respectively.

Let θ be the angle between AB and CD. Then,

\[\cos \theta = \frac{3 \times 6 + 3 \times 6 + 4 \times 8}{\sqrt{3^2 + 3^2 + 4^2} \sqrt{6^2 + 6^2 + 8^2}}\]

\[ = \frac{68}{\sqrt{34} \sqrt{136}}\]

\[ = 1\]

\[ \Rightarrow \theta = 0°\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Straight Line in Space - Exercise 28.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 28 Straight Line in Space
Exercise 28.2 | Q 22 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and is parallel to the line `(x+3)/3=(4-y)/5=(z+8)/6`


If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


 

Find the value of p, so that the lines `l_1:(1-x)/3=(7y-14)/p=(z-3)/2 and l_2=(7-7x)/3p=(y-5)/1=(6-z)/5 ` are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, – 4) and parallel to line l1.

 

Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.


Find the vector and the Cartesian equations of the line that passes through the points (3, −2, −5), (3, −2, 6).

 


Find the vector equation of a line which is parallel to the vector \[2 \hat{i} - \hat{j} + 3 \hat{k}\]  and which passes through the point (5, −2, 4). Also, reduce it to cartesian form.


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Find the vector equation of a line passing through (2, −1, 1) and parallel to the line whose equations are \[\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3} .\]


The cartesian equations of a line are x = ay + bz = cy + d. Find its direction ratios and reduce it to vector form. 


Find the points on the line \[\frac{x + 2}{3} = \frac{y + 1}{2} = \frac{z - 3}{2}\]  at a distance of 5 units from the point P (1, 3, 3).


Find the angle between the following pair of line:

\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{- 3} \text { and } \frac{x + 3}{- 1} = \frac{y - 5}{8} = \frac{z - 1}{4}\]


Find the angle between the following pair of line:

\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2. 


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Find the length of the perpendicular drawn from the point (5, 4, −1) to the line \[\overrightarrow{r} = \hat{i}  + \lambda\left( 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \right) .\]


Find the foot of the perpendicular from (1, 2, −3) to the line \[\frac{x + 1}{2} = \frac{y - 3}{- 2} = \frac{z}{- 1} .\]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \lambda - 1 \right) \hat{i} + \left( \lambda + 1 \right) \hat{j}  - \left( 1 + \lambda \right) \hat{k}  \text{ and }  \overrightarrow{r} = \left( 1 - \mu \right) \hat{i}  + \left( 2\mu - 1 \right) \hat{j}  + \left( \mu + 2 \right) \hat{k} \]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k}  \right) + \lambda\left( 2 \hat{i}  - 5 \hat{j} + 2 \hat{k}  \right) \text{ and }, \overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \mu\left( \hat{i} - \hat{j}  + \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\] 


Find the shortest distance between the following pairs of lines whose cartesian equations are:  \[\frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} \text{ and } \frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1}\]


By computing the shortest distance determine whether the following pairs of lines intersect or not  : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} - \hat{j}  \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]


Write the cartesian and vector equations of X-axis.

 

Cartesian equations of a line AB are  \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\]   Write the direction ratios of a line parallel to AB.


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


The perpendicular distance of the point P (1, 2, 3) from the line \[\frac{x - 6}{3} = \frac{y - 7}{2} = \frac{z - 7}{- 2}\] is 

 


The projections of a line segment on XY and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are


The shortest distance between the lines  \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\] 

 

 

 

 


Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.


Find the value of p for which the following lines are perpendicular : 

`(1-x)/3 = (2y-14)/(2p) = (z-3)/2 ; (1-x)/(3p) = (y-5)/1 = (6-z)/5`


Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______ 


If slopes of lines represented by kx2 - 4xy + y2 = 0 differ by 2, then k = ______ 


The distance of the point (4, 3, 8) from the Y-axis is ______.


P is a point on the line joining the points A(0, 5, −2) and B(3, −1, 2). If the x-coordinate of P is 6, then its z-coordinate is ______.


A line passes through the point (2, – 1, 3) and is perpendicular to the lines `vecr = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `vecr = (2hati - hatj - 3hatk) + μ(hati + 2hatj + 2hatk)` obtain its equation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×