Advertisements
Advertisements
प्रश्न
Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\]
उत्तर
The equations of the given lines are
\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \] ...........(1)
\[\frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\] .............(2)
Since line (1) passes through the point (1, 2, 3) and has direction ratios proportional to 2, 3, 4, its vector equation is \[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \]
\[Here, \]
\[ \overrightarrow{a_1} = \hat{i} + 2 \hat{j} + 3 \hat{k} \]
\[ \overrightarrow{b_1} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \]
Also, line (2) passes through the point (2, 3, 5) and has direction ratios proportional to 3, 4, 5.
Its vector equation is \[\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2} \]
\[\text{ Here } , \]
\[ \overrightarrow{a_2} = 2 \hat{i} + 3 \hat{j} + 5 \hat{k} \]
\[ \overrightarrow{b_2} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \]
Now,
\[\overrightarrow{a_2} - \overrightarrow{a_1} = \hat{i} + \hat{j} + 2 \hat{k} \]
\[\text{ and }\overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{vmatrix}\]
\[ = - \hat{i} + 2 \hat{j} - \hat{k} \]
\[ \Rightarrow \left| \vec{b_1} \times \vec{b_2} \right| = \sqrt{\left( - 1 \right)^2 + 2^2 + \left( - 1 \right)^2}\]
\[ = \sqrt{1 + 4 + 1}\]
\[ = \sqrt{6}\]
\[\text{ and } \left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) . \left( \overrightarrow{b_1} \times \overrightarrow{b_2} \right) = \left( \hat{i} + \hat{j} + 2 \hat{k} \right) . \left( - \hat{i} + 2 \hat{j} - \hat{k} \right)\]
\[ = - 1 + 2 - 2\]
\[ = - 1\]
The shortest distance between the lines \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] is given by
\[d = \left| \frac{\left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) . \left( \overrightarrow{b_1} \times \overrightarrow{b_2} \right)}{\left| \overrightarrow{b_1} \times \overrightarrow{b_2} \right|} \right|\]
\[ = \left| \frac{- 1}{\sqrt{6}} \right|\]
\[ = \frac{1}{\sqrt{6}}\]
APPEARS IN
संबंधित प्रश्न
The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.
Find the value of p, so that the lines `l_1:(1-x)/3=(7y-14)/p=(z-3)/2 and l_2=(7-7x)/3p=(y-5)/1=(6-z)/5 ` are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, – 4) and parallel to line l1.
Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines
`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`
Find the equation of the line in vector and in Cartesian form that passes through the point with position vector `2hati -hatj+4hatk` and is in the direction `hati + 2hatj - hatk`.
Show that the lines `(x-5)/7 = (y + 2)/(-5) = z/1` and `x/1 = y/2 = z/3` are perpendicular to each other.
Find the vector and Cartesian equations of a line passing through (1, 2, –4) and perpendicular to the two lines `(x - 8)/3 = (y + 19)/(-16) = (z - 10)/7` and `(x - 15)/3 = (y - 29)/8 = (z - 5)/(-5)`
Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\] Also, reduce the equation obtained in vector form.
Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the angle between the following pair of line:
\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{ and } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]
Find the angle between the pairs of lines with direction ratios proportional to 1, 2, −2 and −2, 2, 1 .
Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the other one is obtained by joining the points (3, 1, 4) and (7, 2, 12).
Find the equation of the line passing through the point \[\hat{i} + \hat{j} - 3 \hat{k} \] and perpendicular to the lines \[\overrightarrow{r} = \hat{i} + \lambda\left( 2 \hat{i} + \hat{j} - 3 \hat{k} \right) \text { and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{ k} \right) + \mu\left( \hat{i} + \hat{j} + \hat{k} \right) .\]
Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.
Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2.
Find the value of λ so that the following lines are perpendicular to each other. \[\frac{x - 5}{5\lambda + 2} = \frac{2 - y}{5} = \frac{1 - z}{- 1}, \frac{x}{1} = \frac{2y + 1}{4\lambda} = \frac{1 - z}{- 3}\]
Prove that the line \[\vec{r} = \left( \hat{i }+ \hat{j }- \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \vec{r} = \left( 4 \hat{i} - \hat{k} \right) + \mu\left( 2 \hat{i} + 3 \hat{k} \right)\] intersect and find their point of intersection.
Find the perpendicular distance of the point (1, 0, 0) from the line \[\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z + 10}{8}.\] Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.
A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D.
Find the shortest distance between the following pairs of lines whose vector equations are: \[\vec{r} = 3 \hat{i} + 8 \hat{j} + 3 \hat{k} + \lambda\left( 3 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \vec{r} = - 3 \hat{i} - 7 \hat{j} + 6 \hat{k} + \mu\left( - 3 \hat{i} + 2 \hat{j} + 4 \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + 4 \hat{j} + 5 \hat{k} \right) + \mu\left( 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 1 - t \right) \hat{i} + \left( t - 2 \right) \hat{j} + \left( 3 - t \right) \hat{k} \text{ and } \overrightarrow{r} = \left( s + 1 \right) \hat{i} + \left( 2s - 1 \right) \hat{j} - \left( 2s + 1 \right) \hat{k} \]
Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{3} = \frac{y - 2}{1}; z = 2\]
By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]
Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(1, 3, 0) and (0, 3, 0)
Find the shortest distance between the lines \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} - \hat{j} - \hat{k} + \mu\left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right)\]
Find the shortest distance between the lines \[\overrightarrow{r} = \hat{i} + 2 \hat{j} + 3 \hat{k} + \lambda\left( \hat{i} - 3 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 4 \hat{i} + 5 \hat{j} + 6 \hat{k} + \mu\left( 2 \hat{i} + 3 \hat{j} + \hat{k} \right)\]
Write the direction cosines of the line \[\frac{x - 2}{2} = \frac{2y - 5}{- 3}, z = 2 .\]
Write the coordinate axis to which the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 1}{0}\] is perpendicular.
Write the formula for the shortest distance between the lines
\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\]
Find the angle between the lines
\[\vec{r} = \left( 2 \hat{i} - 5 \hat{j} + \hat{k} \right) + \lambda\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] and \[\vec{r} = 7 \hat{i} - 6 \hat{k} + \mu\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right)\]
Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.
If a line makes angles α, β and γ with the axes respectively, then cos 2 α + cos 2 β + cos 2 γ =
The equation 4x2 + 4xy + y2 = 0 represents two ______