Advertisements
Advertisements
प्रश्न
Prove that the line \[\vec{r} = \left( \hat{i }+ \hat{j }- \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \vec{r} = \left( 4 \hat{i} - \hat{k} \right) + \mu\left( 2 \hat{i} + 3 \hat{k} \right)\] intersect and find their point of intersection.
उत्तर
The position vectors of two arbitrary points on the given lines are
\[\left( \hat{i} + \hat{j} - \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) = \left( 1 + 3\lambda \right) \hat{i} + \left( 1 - \lambda \right) \hat{j} - \hat{k} \]
\[\left( 4 \hat{i} - \hat{k} \right) + \mu\left( 2 \hat{i} + 3 \hat{k} \right) = \left( 4 + 2\mu \right) \hat{i} + 0 \hat{j } + \left( 3\mu - 1 \right) \hat{k} \]
If the lines intersect, then they have a common point. So, for some values of \[\lambda \text{ and } \mu\] ,
we must have
\[\left( 1 + 3\lambda \right) \hat{i} + \left( 1 - \lambda \right) \hat{j} - \hat{k} = \left( 4 + 2\mu \right) \hat{i}+ 0 \hat{j} + \left( 3\mu - 1 \right) \hat{k}\]
Equating the coefficients of \[\hat{i} , \hat{j} \text{ and } \hat{k} \]
we get
\[1 + 3\lambda = 4 + 2\mu . . . (1)\]
\[1 - \lambda = 0 . . . (2)\]
\[3\mu - 1 = - 1 . . . (3)\]
Solving (2) and (3), we get
\[\lambda = 1 \]
\[\mu = 0\]
Substituting the values \[\lambda = 1 \text{ and } \mu = 0\]
we get ,
\[LHS = 1 + 3\lambda\]
\[ = 1 + 3\left( 1 \right)\]
\[ = 4\]
\[RHS = 4 + 2\mu\]
\[ = 4 + 2\left( 0 \right)\]
\[ = 4\]
\[ \Rightarrow LHS = RHS\]
\[\text{ Since } \lambda = 1 \text{ and } \mu = 0 \text{ satisfy (3), the given lines intersect } .\] Substituting \[\mu = 0\] in the second line, we get \[\vec{r} = 4 \hat{i} + 0 \hat{j} - \hat{k} \] as the position vector of the point of intersection.
Thus, the coordinates of the point of intersection are (4, 0,-1) .
संबंधित प्रश्न
The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.
Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.
Show that the three lines with direction cosines `12/13, (-3)/13, (-4)/13; 4/13, 12/13, 3/13; 3/13, (-4)/13, 12/13 ` are mutually perpendicular.
Show that the line through the points (4, 7, 8) (2, 3, 4) is parallel to the line through the points (−1, −2, 1), (1, 2, 5).
Find the equation of the line in vector and in Cartesian form that passes through the point with position vector `2hati -hatj+4hatk` and is in the direction `hati + 2hatj - hatk`.
Find the vector and Cartesian equations of a line passing through (1, 2, –4) and perpendicular to the two lines `(x - 8)/3 = (y + 19)/(-16) = (z - 10)/7` and `(x - 15)/3 = (y - 29)/8 = (z - 5)/(-5)`
Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]
Find the vector equation of the line passing through the points (−1, 0, 2) and (3, 4, 6).
ABCD is a parallelogram. The position vectors of the points A, B and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\] Find the vector equation of the line BD. Also, reduce it to cartesian form.
Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\] Also, reduce the equation obtained in vector form.
Find the direction cosines of the line \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\] Also, reduce it to vector form.
Find the vector equation of a line passing through the point with position vector \[\hat{i} - 2 \hat{j} - 3 \hat{k}\] and parallel to the line joining the points with position vectors \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.
Find the points on the line \[\frac{x + 2}{3} = \frac{y + 1}{2} = \frac{z - 3}{2}\] at a distance of 5 units from the point P (1, 3, 3).
Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the through the points (0, 3, 2) and (3, 5, 6).
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the angle between the following pair of line:
\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} \text { and } \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]
Find the angle between the following pair of line:
\[\frac{- x + 2}{- 2} = \frac{y - 1}{7} = \frac{z + 3}{- 3} \text{ and } \frac{x + 2}{- 1} = \frac{2y - 8}{4} = \frac{z - 5}{4}\]
Find the angle between the pairs of lines with direction ratios proportional to 5, −12, 13 and −3, 4, 5
Find the equations of the line passing through the point (2, 1, 3) and perpendicular to the lines \[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \text{ and } \frac{x}{- 3} = \frac{y}{2} = \frac{z}{5}\]
Show that the lines \[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} \text{ and } \frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4}\] intersect and find their point of intersection.
Determine whether the following pair of lines intersect or not:
\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]
Find the equation of the perpendicular drawn from the point P (−1, 3, 2) to the line \[\overrightarrow{r} = \left( 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) .\] Also, find the coordinates of the foot of the perpendicular from P.
Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD.
Find the shortest distance between the lines \[\overrightarrow{r} = \hat{i} + 2 \hat{j} + 3 \hat{k} + \lambda\left( \hat{i} - 3 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 4 \hat{i} + 5 \hat{j} + 6 \hat{k} + \mu\left( 2 \hat{i} + 3 \hat{j} + \hat{k} \right)\]
Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = - 4 \hat{i} - \hat{k} + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k} \right)\]
Write the vector equation of a line passing through a point having position vector \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .
Cartesian equations of a line AB are \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\] Write the direction ratios of a line parallel to AB.
Write the direction cosines of the line \[\frac{x - 2}{2} = \frac{2y - 5}{- 3}, z = 2 .\]
Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.
Write the formula for the shortest distance between the lines
\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\]
The angle between the lines
The direction ratios of the line x − y + z − 5 = 0 = x − 3y − 6 are proportional to
The perpendicular distance of the point P (1, 2, 3) from the line \[\frac{x - 6}{3} = \frac{y - 7}{2} = \frac{z - 7}{- 2}\] is
The lines \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3} \text { and } \frac{x - 1}{- 2} = \frac{y - 2}{- 4} = \frac{z - 3}{- 6}\]
Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.
Choose correct alternatives:
If the equation 4x2 + hxy + y2 = 0 represents two coincident lines, then h = _______
If 2x + y = 0 is one of the line represented by 3x2 + kxy + 2y2 = 0 then k = ______
Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.
`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`
Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.