Advertisements
Advertisements
प्रश्न
Prove that the line \[\vec{r} = \left( \hat{i }+ \hat{j }- \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \vec{r} = \left( 4 \hat{i} - \hat{k} \right) + \mu\left( 2 \hat{i} + 3 \hat{k} \right)\] intersect and find their point of intersection.
उत्तर
The position vectors of two arbitrary points on the given lines are
\[\left( \hat{i} + \hat{j} - \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) = \left( 1 + 3\lambda \right) \hat{i} + \left( 1 - \lambda \right) \hat{j} - \hat{k} \]
\[\left( 4 \hat{i} - \hat{k} \right) + \mu\left( 2 \hat{i} + 3 \hat{k} \right) = \left( 4 + 2\mu \right) \hat{i} + 0 \hat{j } + \left( 3\mu - 1 \right) \hat{k} \]
If the lines intersect, then they have a common point. So, for some values of \[\lambda \text{ and } \mu\] ,
we must have
\[\left( 1 + 3\lambda \right) \hat{i} + \left( 1 - \lambda \right) \hat{j} - \hat{k} = \left( 4 + 2\mu \right) \hat{i}+ 0 \hat{j} + \left( 3\mu - 1 \right) \hat{k}\]
Equating the coefficients of \[\hat{i} , \hat{j} \text{ and } \hat{k} \]
we get
\[1 + 3\lambda = 4 + 2\mu . . . (1)\]
\[1 - \lambda = 0 . . . (2)\]
\[3\mu - 1 = - 1 . . . (3)\]
Solving (2) and (3), we get
\[\lambda = 1 \]
\[\mu = 0\]
Substituting the values \[\lambda = 1 \text{ and } \mu = 0\]
we get ,
\[LHS = 1 + 3\lambda\]
\[ = 1 + 3\left( 1 \right)\]
\[ = 4\]
\[RHS = 4 + 2\mu\]
\[ = 4 + 2\left( 0 \right)\]
\[ = 4\]
\[ \Rightarrow LHS = RHS\]
\[\text{ Since } \lambda = 1 \text{ and } \mu = 0 \text{ satisfy (3), the given lines intersect } .\] Substituting \[\mu = 0\] in the second line, we get \[\vec{r} = 4 \hat{i} + 0 \hat{j} - \hat{k} \] as the position vector of the point of intersection.
Thus, the coordinates of the point of intersection are (4, 0,-1) .
संबंधित प्रश्न
Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and is parallel to the line `(x+3)/3=(4-y)/5=(z+8)/6`
Find the separate equations of the lines represented by the equation 3x2 – 10xy – 8y2 = 0.
Find the vector and Cartesian equations of the line through the point (1, 2, −4) and perpendicular to the two lines.
`vecr=(8hati-19hatj+10hatk)+lambda(3hati-16hatj+7hatk) " and "vecr=(15hati+29hatj+5hatk)+mu(3hati+8hatj-5hatk)`
If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.
Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.
Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by `(x+3)/3 = (y-4)/5 = (z+8)/6`.
Find the vector and the Cartesian equations of the line that passes through the points (3, −2, −5), (3, −2, 6).
Find the equation of a line parallel to x-axis and passing through the origin.
Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]
Find the vector equation of the line passing through the points (−1, 0, 2) and (3, 4, 6).
Find the vector equation of a line passing through (2, −1, 1) and parallel to the line whose equations are \[\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3} .\]
Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{ and } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]
Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2.
If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.
Find the direction cosines of the line
\[\frac{x + 2}{2} = \frac{2y - 7}{6} = \frac{5 - z}{6}\] Also, find the vector equation of the line through the point A(−1, 2, 3) and parallel to the given line.
Show that the lines \[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} \text{ and } \frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4}\] intersect and find their point of intersection.
Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{ and } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\] intersect. Find their point of intersection.
Determine whether the following pair of lines intersect or not:
\[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]
Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3).
Find the foot of perpendicular from the point (2, 3, 4) to the line \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\] Also, find the perpendicular distance from the given point to the line.
Find the foot of the perpendicular drawn from the point \[\hat{i} + 6 \hat{j} + 3 \hat{k} \] to the line \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) .\] Also, find the length of the perpendicular
Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = - 4 \hat{i} - \hat{k} + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k} \right)\]
Find the distance between the lines l1 and l2 given by \[\overrightarrow{r} = \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right) \text{ and } , \overrightarrow{r} = 3 \hat{i} + 3 \hat{j} - 5 \hat{k} + \mu\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right)\]
Write the cartesian and vector equations of Z-axis.
Write the direction cosines of the line \[\frac{x - 2}{2} = \frac{2y - 5}{- 3}, z = 2 .\]
Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.
Write the condition for the lines \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.
The equations of a line are given by \[\frac{4 - x}{3} = \frac{y + 3}{3} = \frac{z + 2}{6} .\] Write the direction cosines of a line parallel to this line.
Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.
The angle between the straight lines \[\frac{x + 1}{2} = \frac{y - 2}{5} = \frac{z + 3}{4} and \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z - 3}{- 3}\] is
The angle between the lines
If a line makes angles α, β and γ with the axes respectively, then cos 2 α + cos 2 β + cos 2 γ =
If the direction ratios of a line are proportional to 1, −3, 2, then its direction cosines are
Find the value of p for which the following lines are perpendicular :
`(1-x)/3 = (2y-14)/(2p) = (z-3)/2 ; (1-x)/(3p) = (y-5)/1 = (6-z)/5`
The equation 4x2 + 4xy + y2 = 0 represents two ______
Find the separate equations of the lines given by x2 + 2xy tan α − y2 = 0