Advertisements
Advertisements
प्रश्न
Show that the lines \[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} \text{ and } \frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4}\] intersect and find their point of intersection.
उत्तर
The coordinates of any point on the first line are given by
\[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} = \lambda\]
\[ \Rightarrow x = \lambda\]
\[ y = 2\lambda + 2 \]
\[ z = 3\lambda - 3\]
The coordinates of a general point on the first line are
\[\left( \lambda, 2\lambda + 2, 3\lambda - 3 \right)\]
Also, the coordinates of any point on the second line are given by
\[\frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4} = \mu\]
\[ \Rightarrow x = 2\mu + 2\]
\[ y = 3\mu + 6 \]
\[ z = 4\mu + 3\]
The coordinates of a general point on the second line are
\[\left( 2\mu + 2, 3\mu + 6, 4\mu + 3 \right)\]
If the lines intersect, then they have a common point. So, for some values of
\[\lambda \text{ and } \mu\] we must have
\[\lambda = 2\mu + 2, 2\lambda + 2 = 3\mu + 6, 3\lambda - 3 = 4\mu + 3\]
\[ \Rightarrow \lambda - 2\mu = 2 . . . (1)\]
\[ 2\lambda - 3\mu = 4 . . . (2)\]
\[ 3\lambda - 4\mu = 6 . . . (3)\]
\[\text{ Solving (1) and (2), we get } \]
\[\lambda = 2 \text{ and } \mu = 0\]
\[\text{ Substituting } \lambda = 2 \text{ and } \mu = 0 \text{ in (3), we get }\]
\[LHS = 3\lambda - 4\mu\]
\[ = 3\left( 2 \right) - 4\left( 0 \right)\]
\[ = 6\]
\[ = RHS\]
\[\text{ Since } \lambda = 2 \text{ and } \mu = 0 \text{ satisfy the third equation, the given lines intersect at } \left( 2, 6, 3 \right) .\]
APPEARS IN
संबंधित प्रश्न
The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.
Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.
Find the vector and Cartesian equations of a line passing through (1, 2, –4) and perpendicular to the two lines `(x - 8)/3 = (y + 19)/(-16) = (z - 10)/7` and `(x - 15)/3 = (y - 29)/8 = (z - 5)/(-5)`
Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]
Find the vector equation of a line which is parallel to the vector \[2 \hat{i} - \hat{j} + 3 \hat{k}\] and which passes through the point (5, −2, 4). Also, reduce it to cartesian form.
ABCD is a parallelogram. The position vectors of the points A, B and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\] Find the vector equation of the line BD. Also, reduce it to cartesian form.
Show that the three lines with direction cosines \[\frac{12}{13}, \frac{- 3}{13}, \frac{- 4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{- 4}{13}, \frac{12}{13}\] are mutually perpendicular.
Find the angle between the following pair of line:
\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]
Find the angle between the following pair of line:
\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]
Find the angle between the pairs of lines with direction ratios proportional to 5, −12, 13 and −3, 4, 5
Find the angle between the pairs of lines with direction ratios proportional to 1, 2, −2 and −2, 2, 1 .
Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the other one is obtained by joining the points (3, 1, 4) and (7, 2, 12).
Prove that the line \[\vec{r} = \left( \hat{i }+ \hat{j }- \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \vec{r} = \left( 4 \hat{i} - \hat{k} \right) + \mu\left( 2 \hat{i} + 3 \hat{k} \right)\] intersect and find their point of intersection.
Find the perpendicular distance of the point (3, −1, 11) from the line \[\frac{x}{2} = \frac{y - 2}{- 3} = \frac{z - 3}{4} .\]
Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3).
Find the length of the perpendicular drawn from the point (5, 4, −1) to the line \[\overrightarrow{r} = \hat{i} + \lambda\left( 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \right) .\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \lambda - 1 \right) \hat{i} + \left( \lambda + 1 \right) \hat{j} - \left( 1 + \lambda \right) \hat{k} \text{ and } \overrightarrow{r} = \left( 1 - \mu \right) \hat{i} + \left( 2\mu - 1 \right) \hat{j} + \left( \mu + 2 \right) \hat{k} \]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k} \right) + \lambda\left( 2 \hat{i} - 5 \hat{j} + 2 \hat{k} \right) \text{ and }, \overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \mu\left( \hat{i} - \hat{j} + \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} \text{ and } \frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1}\]
Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(1, 3, 0) and (0, 3, 0)
Write the vector equations of the following lines and hence determine the distance between them \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z + 4}{6} \text{ and } \frac{x - 3}{4} = \frac{y - 3}{6} = \frac{z + 5}{12}\]
Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]
Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.
Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.
Write the formula for the shortest distance between the lines
\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\]
Write the condition for the lines \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.
Find the Cartesian equations of the line which passes through the point (−2, 4 , −5) and is parallel to the line \[\frac{x + 3}{3} = \frac{4 - y}{5} = \frac{z + 8}{6} .\]
If a line makes angles α, β and γ with the axes respectively, then cos 2 α + cos 2 β + cos 2 γ =
Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.
The equation of a line is 2x -2 = 3y +1 = 6z -2 find the direction ratios and also find the vector equation of the line.
Choose correct alternatives:
If the equation 4x2 + hxy + y2 = 0 represents two coincident lines, then h = _______
The equation of line passing through (3, -1, 2) and perpendicular to the lines `overline("r")=(hat"i"+hat"j"-hat"k")+lambda(2hat"i"-2hat"j"+hat"k")` and `overline("r")=(2hat"i"+hat"j"-3hat"k")+mu(hat"i"-2hat"j"+2hat"k")` is ______.
The distance of the point (4, 3, 8) from the Y-axis is ______.
Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.
Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.
Equation of a line passing through (1, 1, 1) and parallel to z-axis is ______.