Advertisements
Advertisements
Question
Show that the lines \[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} \text{ and } \frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4}\] intersect and find their point of intersection.
Solution
The coordinates of any point on the first line are given by
\[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} = \lambda\]
\[ \Rightarrow x = \lambda\]
\[ y = 2\lambda + 2 \]
\[ z = 3\lambda - 3\]
The coordinates of a general point on the first line are
\[\left( \lambda, 2\lambda + 2, 3\lambda - 3 \right)\]
Also, the coordinates of any point on the second line are given by
\[\frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4} = \mu\]
\[ \Rightarrow x = 2\mu + 2\]
\[ y = 3\mu + 6 \]
\[ z = 4\mu + 3\]
The coordinates of a general point on the second line are
\[\left( 2\mu + 2, 3\mu + 6, 4\mu + 3 \right)\]
If the lines intersect, then they have a common point. So, for some values of
\[\lambda \text{ and } \mu\] we must have
\[\lambda = 2\mu + 2, 2\lambda + 2 = 3\mu + 6, 3\lambda - 3 = 4\mu + 3\]
\[ \Rightarrow \lambda - 2\mu = 2 . . . (1)\]
\[ 2\lambda - 3\mu = 4 . . . (2)\]
\[ 3\lambda - 4\mu = 6 . . . (3)\]
\[\text{ Solving (1) and (2), we get } \]
\[\lambda = 2 \text{ and } \mu = 0\]
\[\text{ Substituting } \lambda = 2 \text{ and } \mu = 0 \text{ in (3), we get }\]
\[LHS = 3\lambda - 4\mu\]
\[ = 3\left( 2 \right) - 4\left( 0 \right)\]
\[ = 6\]
\[ = RHS\]
\[\text{ Since } \lambda = 2 \text{ and } \mu = 0 \text{ satisfy the third equation, the given lines intersect at } \left( 2, 6, 3 \right) .\]
APPEARS IN
RELATED QUESTIONS
The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.
Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).
Find the vector and the Cartesian equations of the line that passes through the points (3, −2, −5), (3, −2, 6).
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).
Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`
Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]
Find the vector equation of the line passing through the points (−1, 0, 2) and (3, 4, 6).
Find the vector equation of a line which is parallel to the vector \[2 \hat{i} - \hat{j} + 3 \hat{k}\] and which passes through the point (5, −2, 4). Also, reduce it to cartesian form.
The cartesian equations of a line are x = ay + b, z = cy + d. Find its direction ratios and reduce it to vector form.
Find the vector equation of a line passing through the point with position vector \[\hat{i} - 2 \hat{j} - 3 \hat{k}\] and parallel to the line joining the points with position vectors \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.
Find the angle between the following pair of line:
\[\overrightarrow{r} = \left( 3 \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 5 \hat{j} - 2 \hat{k} \right) + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\]
Find the angle between the following pair of line:
\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]
Find the angle between the following pair of line:
\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{ and } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]
Find the angle between the pairs of lines with direction ratios proportional to 5, −12, 13 and −3, 4, 5
Find the equation of the line passing through the point (2, −1, 3) and parallel to the line \[\overrightarrow{r} = \left( \hat{i} - 2 \hat{j} + \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} - 5 \hat{k} \right) .\]
Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2.
If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.
Find the direction cosines of the line
\[\frac{x + 2}{2} = \frac{2y - 7}{6} = \frac{5 - z}{6}\] Also, find the vector equation of the line through the point A(−1, 2, 3) and parallel to the given line.
Find the foot of the perpendicular drawn from the point \[\hat{i} + 6 \hat{j} + 3 \hat{k} \] to the line \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) .\] Also, find the length of the perpendicular
Find the foot of the perpendicular from (0, 2, 7) on the line \[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2} .\]
Find the foot of the perpendicular from (1, 2, −3) to the line \[\frac{x + 1}{2} = \frac{y - 3}{- 2} = \frac{z}{- 1} .\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + 4 \hat{j} + 5 \hat{k} \right) + \mu\left( 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{- 1} = \frac{y + 2}{1} = \frac{z - 3}{- 2} \text{ and } \frac{x - 1}{1} = \frac{y + 1}{2} = \frac{z + 1}{- 2}\]
By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} - \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \overrightarrow{r} = \left( 4 \hat{i} - \hat{k} \right) + \mu\left( 2 \hat{i} + 3 \hat{k} \right)\]
Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]
Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(i) (0, 0, 0) and (1, 0, 2)
Find the shortest distance between the lines \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} - \hat{j} - \hat{k} + \mu\left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right)\]
Write the cartesian and vector equations of X-axis.
Write the vector equation of a line passing through a point having position vector \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .
Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.
The cartesian equations of a line AB are \[\frac{2x - 1}{\sqrt{3}} = \frac{y + 2}{2} = \frac{z - 3}{3} .\] Find the direction cosines of a line parallel to AB.
The equations of a line are given by \[\frac{4 - x}{3} = \frac{y + 3}{3} = \frac{z + 2}{6} .\] Write the direction cosines of a line parallel to this line.
The projections of a line segment on X, Y and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are
If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k.
Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.
The separate equations of the lines represented by `3x^2 - 2sqrt(3)xy - 3y^2` = 0 are ______
Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.
Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.
`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`
Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.