English

Find the Vector Equation of a Line Passing Through the Point with Position Vector ^ I − 2 ^ J − 3 ^ K and Parallel to the Line Joining the Points ^ I − ^ J + 4 ^ K and 2 ^ I + ^ J + 2 ^ K . - Mathematics

Advertisements
Advertisements

Question

Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.

Sum

Solution

We know that the vector equation of a line passing through a point with position vector `vec a`   and parallel to the vector ` vec b ` is ` \[\vec{r} = \vec{a} + \lambda \vec{b}\] 

Here, 

\[\vec{a} = \hat{i} - 2 \hat{j} - 3 \hat{k} \]

\[ \vec{b} = \left( 2 \hat{i} + \hat{j} + 2 \hat{k}  \right) - \left( \hat{i} - \hat{j} + 4 \hat{k} \right) = \hat{i} + 2 \hat{j} - 2 \hat{k}\] 

Vector equation of the required line is 

\[\vec{r} = \left( \hat{i} - 2 \hat{j} - 3 \hat{k} \right) + \lambda \left( \hat{i} + 2 \hat{j} - 2 \hat{k}  \right) . . . (1)\]

\[\text{ Here } , \lambda \text{ is a parameter } . \]

Reducing (1) to cartesian form, we get

\[x \hat{i} + y \hat{j} + z \hat{k} = \left( \hat{i} - 2 \hat{j} - 3 \hat{k} \right) + \lambda \left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right)  \text {Putting  }  \vec{r} = x \hat{i} + y \hat{j} + z \hat{k}  \text{ in }  (1)]\]

\[ \Rightarrow x \hat{i} + y \hat{j} + z \hat{k} = \left( 1 + \lambda \right) \hat{i} + \left( - 2 + 2 \lambda \right) \hat{j} + \left( - 3 - 2\lambda \right) \hat{k} \]

\[\text{ Comparing the coefficients of   } \hat{i} , \hat{j} \text{ and }\hat{k}, \text{ we get } \]

\[x = 1 + \lambda, y = - 2 + 2 \lambda, z = - 3 - 2\lambda\]

\[ \Rightarrow \frac{x - 1}{1} = \lambda, \frac{y + 2}{2} = \lambda, \frac{z + 3}{- 2} = \lambda\]

\[ \Rightarrow \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z + 3}{- 2} = \lambda\]

\[\text{ Hence, the cartesian form of (1) is } \]

\[\frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z + 3}{- 2}\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Straight Line in Space - Exercise 28.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 28 Straight Line in Space
Exercise 28.1 | Q 13 | Page 10

RELATED QUESTIONS

The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.


The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.

 


If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines

`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`


Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


The Cartesian equation of a line is `(x-5)/3 = (y+4)/7 = (z-6)/2` Write its vector form.


Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).


Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`


Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector  \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]


A line passes through the point with position vector \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \] and is in the direction of  \[3 \hat{i} + 4 \hat{j} - 5 \hat{k} .\] Find equations of the line in vector and cartesian form. 


ABCD is a parallelogram. The position vectors of the points AB and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k}  \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\]  Find the vector equation of the line BD. Also, reduce it to cartesian form.


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Find the vector equation of a line passing through (2, −1, 1) and parallel to the line whose equations are \[\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3} .\]


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]

 


Find the angle between the following pair of line:

\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]


Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\] 


Find the equation of the line passing through the point (2, −1, 3) and parallel to the line  \[\overrightarrow{r} = \left( \hat{i} - 2 \hat{j} + \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} - 5 \hat{k} \right) .\]


If the coordinates of the points ABCD be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Find the coordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, −1, 3) and C(2, −3, −1).      


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 1 - t \right) \hat{i} + \left( t - 2 \right) \hat{j} + \left( 3 - t \right) \hat{k}  \text{ and }  \overrightarrow{r} = \left( s + 1 \right) \hat{i}  + \left( 2s - 1 \right) \hat{j}  - \left( 2s + 1 \right) \hat{k} \]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k}  \right) + \lambda\left( 2 \hat{i}  - 5 \hat{j} + 2 \hat{k}  \right) \text{ and }, \overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \mu\left( \hat{i} - \hat{j}  + \hat{k}  \right)\]


Find the shortest distance between the following pairs of parallel lines whose equations are:  \[\overrightarrow{r} = \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( \hat{i}  - \hat{j} + \hat{k} \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i}  - \hat{j} - \hat{k} \right) + \mu\left( - \hat{i} + \hat{j} - \hat{k} \right)\]


Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(i) (0, 0, 0) and (1, 0, 2) 


Find the shortest distance between the lines \[\overrightarrow{r} = \hat{i} + 2 \hat{j} + 3 \hat{k} + \lambda\left( \hat{i} - 3 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = 4 \hat{i} + 5 \hat{j}  + 6 \hat{k} + \mu\left( 2 \hat{i} + 3 \hat{j} + \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = - 4 \hat{i}  - \hat{k}  + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k}  \right)\]


Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.

 

Write the condition for the lines  \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and  } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.


The angle between the lines

\[\frac{x - 1}{1} = \frac{y - 1}{1} = \frac{z - 1}{2} \text{ and }, \frac{x - 1}{- \sqrt{3} - 1} = \frac{y - 1}{\sqrt{3} - 1} = \frac{z - 1}{4}\] is 

The perpendicular distance of the point P (1, 2, 3) from the line \[\frac{x - 6}{3} = \frac{y - 7}{2} = \frac{z - 7}{- 2}\] is 

 


The projections of a line segment on XY and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are


Choose correct alternatives:

The difference between the slopes of the lines represented by 3x2 - 4xy + y2 = 0 is 2


Find the joint equation of pair of lines through the origin which is perpendicular to the lines represented by 5x2 + 2xy - 3y2 = 0 


If slopes of lines represented by kx2 - 4xy + y2 = 0 differ by 2, then k = ______ 


A line passes through the point (2, – 1, 3) and is perpendicular to the lines `vecr = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `vecr = (2hati - hatj - 3hatk) + μ(hati + 2hatj + 2hatk)` obtain its equation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×