English

The Projections of a Line Segment on X, Y and Z Axes Are 12, 4 and 3 Respectively. the Length and Direction Cosines of the Line Segment Are (A) 13 ; 12 13 , 4 13 , 3 13 (B) 19 ; 12 19 , 4 19 , 3 19 - Mathematics

Advertisements
Advertisements

Question

The projections of a line segment on XY and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are

Options

  • \[13; \frac{12}{13}, \frac{4}{13}, \frac{3}{13}\]

  • \[19; \frac{12}{19}, \frac{4}{19}, \frac{3}{19}\]

  • \[11; \frac{12}{11}, \frac{14}{11}, \frac{3}{11}\]

  •  none of these

MCQ

Solution

 \[13; \frac{12}{13}, \frac{4}{13}, \frac{3}{13}\]  

If a line makes angles α, β and γ with the axes, then \[\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1     . . . (1)\] 

Let r be the length of the line segment. Then, 

\[r \cos \alpha = 12, r \cos \beta = 4, r \cos \gamma = 3 . . . (2)\]

\[ \Rightarrow \left( r \cos \alpha \right)^2 + \left( r \cos \beta \right)^2 + \left( r \cos \gamma \right)^2 = {12}^2 + 4^2 + 3^2 \]

\[ \Rightarrow r^2 \left( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma \right) = 169\]

\[ \Rightarrow r^2 \left( 1 \right) = 169 \left[ \text { From }\left( 1 \right) \right]\]

\[ \Rightarrow r = \sqrt{169}\]

\[ \Rightarrow r = \pm 13\]

\[ \Rightarrow r = 13  ( \text{ Since length cannot be negative } )\]

Substituting r = 13 in (2),

we get ,

\[\cos \alpha = \frac{12}{13}, \cos \beta = \frac{4}{13}, \cos \gamma = \frac{1}{13}\] 

Thus, the direction cosines of the line are 

\[\frac{12}{13}, \frac{4}{13}, \frac{1}{13}\] 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Straight Line in Space - MCQ [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 28 Straight Line in Space
MCQ | Q 11 | Page 43

RELATED QUESTIONS

Find the separate equations of the lines represented by the equation 3x2 – 10xy – 8y2 = 0.


Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines

`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`


Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.


Find the equation of the line in vector and in Cartesian form that passes through the point with position vector `2hati -hatj+4hatk`  and is in the direction `hati + 2hatj - hatk`.


Find the vector and Cartesian equations of a line passing through (1, 2, –4) and perpendicular to the two lines `(x - 8)/3 = (y + 19)/(-16) = (z - 10)/7` and `(x - 15)/3 = (y - 29)/8 = (z - 5)/(-5)`


Find the vector equation of the line passing through the points (−1, 0, 2) and (3, 4, 6).


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


The cartesian equations of a line are x = ay + bz = cy + d. Find its direction ratios and reduce it to vector form. 


Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.


Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]


Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the  other one is obtained by joining the points (3, 1, 4) and (7, 2, 12). 


Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\] 


Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line  \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]


Find the equation of the line passing through the point (1, −1, 1) and perpendicular to the lines joining the points (4, 3, 2), (1, −1, 0) and (1, 2, −1), (2, 1, 1).


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{           and                  } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\]   intersect. Find their point of intersection.


Prove that the lines through A (0, −1, −1) and B (4, 5, 1) intersects the line through C (3, 9, 4) and D (−4, 4, 4). Also, find their point of intersection. 


Show that the lines \[\vec{r} = 3 \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \vec{r} = 5 \hat{i} - 2 \hat{j}  + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] are intersecting. Hence, find their point of intersection.


A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


Find the coordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, −1, 3) and C(2, −3, −1).      


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]


Find the shortest distance between the following pairs of parallel lines whose equations are:  \[\overrightarrow{r} = \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( \hat{i}  - \hat{j} + \hat{k} \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i}  - \hat{j} - \hat{k} \right) + \mu\left( - \hat{i} + \hat{j} - \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} - \hat{j} - \hat{k} + \mu\left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = \hat{i} + 2 \hat{j} + 3 \hat{k} + \lambda\left( \hat{i} - 3 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = 4 \hat{i} + 5 \hat{j}  + 6 \hat{k} + \mu\left( 2 \hat{i} + 3 \hat{j} + \hat{k} \right)\]


Find the distance between the lines l1 and l2 given by  \[\overrightarrow{r} = \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( 2 \hat{i}  + 3 \hat{j}  + 6 \hat{k}  \right) \text{ and } , \overrightarrow{r} = 3 \hat{i} + 3 \hat{j}  - 5 \hat{k}  + \mu\left( 2 \hat{i} + 3 \hat{j}  + 6 \hat{k}  \right)\]

 

 


Cartesian equations of a line AB are  \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\]   Write the direction ratios of a line parallel to AB.


The cartesian equations of a line AB are  \[\frac{2x - 1}{\sqrt{3}} = \frac{y + 2}{2} = \frac{z - 3}{3} .\]   Find the direction cosines of a line parallel to AB


The angle between the straight lines \[\frac{x + 1}{2} = \frac{y - 2}{5} = \frac{z + 3}{4} and \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z - 3}{- 3}\] is


The direction ratios of the line perpendicular to the lines \[\frac{x - 7}{2} = \frac{y + 17}{- 3} = \frac{z - 6}{1} \text{ and }, \frac{x + 5}{1} = \frac{y + 3}{2} = \frac{z - 4}{- 2}\] are proportional to


The direction ratios of the line x − y + z − 5 = 0 = x − 3y − 6 are proportional to

 

 


The equation of the line passing through the points \[a_1 \hat{i}  + a_2 \hat{j}  + a_3 \hat{k}  \text{ and }  b_1 \hat{i} + b_2 \hat{j}  + b_3 \hat{k} \]  is 


If a line makes angle \[\frac{\pi}{3} \text{ and } \frac{\pi}{4}\]  with x-axis and y-axis respectively, then the angle made by the line with z-axis is


Choose correct alternatives:

If the equation 4x2 + hxy + y2 = 0 represents two coincident lines, then h = _______


If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then


The separate equations of the lines represented by `3x^2 - 2sqrt(3)xy - 3y^2` = 0 are ______ 


If 2x + y = 0 is one of the line represented by 3x2 + kxy + 2y2 = 0 then k = ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×