English

Show that the Lines → R = 3 ^ I + 2 ^ J − 4 ^ K + λ ( ^ I + 2 ^ J + 2 ^ K ) and → R = 5 ^ I − 2 ^ J + μ ( 3 ^ I + 2 ^ J + 6 ^ K ) Are Intersecting. Hence, Find Their Point of Intersection. - Mathematics

Advertisements
Advertisements

Question

Show that the lines \[\vec{r} = 3 \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \vec{r} = 5 \hat{i} - 2 \hat{j}  + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] are intersecting. Hence, find their point of intersection.

Solution

The position vectors of two arbitrary points on the given lines are 

\[3 \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( i + 2 \hat{j} + 2 \hat{k} \right) = \left( 3 + \lambda \right) \hat{i} + \left( 2 + 2\lambda \right) \hat{j} + \left( 2\lambda - 4 \right) \hat{k}\]

\[5 \hat{i} - 2 \hat{j} + \mu\left( 3 \hat{i} + 2 \hat{j}+ 6 \hat{k} \right) = \left( 5 + 3\mu \right) \hat{i} + \left( - 2 + 2\mu \right) \hat{j} + 6\mu \hat{k}\]

If the lines intersect, then they have a common point. So, for some values of 

\[\lambda \text{ and } \mu\] we must have

\[\left( 3 + \lambda \right) \hat{i} + \left( 2 + 2\lambda \right) \hat{j} + \left( 2\lambda - 4 \right) \hat{k} = \left( 5 + 3\mu \right) \hat{i} + \left( - 2 + 2\mu \right) j^^ + 6\mu \hat{k} \]  Equating the coefficients of \[\hat{i} , \hat{j} \text{ and }  \hat{ k} \]

\[3 + \lambda = 5 + 3\mu . . . (1)\]

\[2 + 2\lambda = - 2 + 2\mu . . . (2) \]

\[2\lambda - 4 = 6\mu . . . (3)\]

Solving (1) and (2), we get 

\[\lambda = - 4\]

\[\mu = - 2\]

Substituting the values

\[\lambda = - 4 \text{ and }  \mu = - 2\]  in (3), we get

\[LHS = 2\lambda - 4\]

\[ = 2\left( - 4 \right) - 4\]

\[ = - 12\]

\[RHS = 6\mu\]

\[ = 6\left( - 2 \right)\]

\[ = - 12\]

\[ \Rightarrow LHS = RHS\]

\[\text{ Since } \lambda = - 4 \text{ and \mu = - 2 satisfy (3), the lines intersect }  .\]

\[\mu = - 2\]  in the second line, we get

\[\vec{r} = 5 \hat{i} - 2 \hat{j} - 6 \hat{i} - 4 \hat{j} - 12 \hat{k} = - \hat{i}- 6 \hat{j} - 12 \hat{k}\] as the position vector of the point of intersection.

Thus, the coordinates of the point of intersection are (-1,-6,-12).

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Straight Line in Space - Exercise 28.3 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 28 Straight Line in Space
Exercise 28.3 | Q 7 | Page 23

RELATED QUESTIONS

Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XZ plane. Also find the angle which this line makes with the XZ plane.


Find the vector and Cartesian equations of the line through the point (1, 2, −4) and perpendicular to the two lines. 

`vecr=(8hati-19hatj+10hatk)+lambda(3hati-16hatj+7hatk) " and "vecr=(15hati+29hatj+5hatk)+mu(3hati+8hatj-5hatk)`

 

 


Show that the three lines with direction cosines `12/13, (-3)/13, (-4)/13;  4/13, 12/13, 3/13;  3/13, (-4)/13, 12/13 ` are mutually perpendicular.


Find the equation of a line parallel to x-axis and passing through the origin.


Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector  \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]


The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]  Find a vector equation for the line.


Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are  \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\]  Also, reduce the equation obtained in vector form.


Show that the line through the points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and, (1, 2, 5).


Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the  other one is obtained by joining the points (3, 1, 4) and (7, 2, 12). 


Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line  \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2. 


If the coordinates of the points ABCD be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD


Find the equation of the perpendicular drawn from the point P (−1, 3, 2) to the line  \[\overrightarrow{r} = \left( 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + \hat{j} + 3 \hat{k}  \right) .\]  Also, find the coordinates of the foot of the perpendicular from P.


Find the foot of the perpendicular from (1, 2, −3) to the line \[\frac{x + 1}{2} = \frac{y - 3}{- 2} = \frac{z}{- 1} .\]


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j}  + 4 \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} + 4 \hat{j} + 5 \hat{k} \right) + \mu\left( 3 \hat{i}  + 4 \hat{j}  + 5 \hat{k} \right)\]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 8 + 3\lambda \right) \hat{i} - \left( 9 + 16\lambda \right) \hat{j} + \left( 10 + 7\lambda \right) \hat{k} \]\[\overrightarrow{r} = 15 \hat{i} + 29 \hat{j} + 5 \hat{k} + \mu\left( 3 \hat{i}  + 8 \hat{j} - 5 \hat{k}  \right)\]


By computing the shortest distance determine whether the following pairs of lines intersect or not  : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} - \hat{j}  \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(i) (0, 0, 0) and (1, 0, 2) 


Find the shortest distance between the lines \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} - \hat{j} - \hat{k} + \mu\left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and }  \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]


Write the cartesian and vector equations of Z-axis.

 

Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

Write the formula for the shortest distance between the lines 

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and }  \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\] 

 


The cartesian equations of a line AB are  \[\frac{2x - 1}{\sqrt{3}} = \frac{y + 2}{2} = \frac{z - 3}{3} .\]   Find the direction cosines of a line parallel to AB


If the equations of a line AB are 

\[\frac{3 - x}{1} = \frac{y + 2}{- 2} = \frac{z - 5}{4},\] write the direction ratios of a line parallel to AB


The angle between the straight lines \[\frac{x + 1}{2} = \frac{y - 2}{5} = \frac{z + 3}{4} and \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z - 3}{- 3}\] is


The angle between the lines

\[\frac{x - 1}{1} = \frac{y - 1}{1} = \frac{z - 1}{2} \text{ and }, \frac{x - 1}{- \sqrt{3} - 1} = \frac{y - 1}{\sqrt{3} - 1} = \frac{z - 1}{4}\] is 

The projections of a line segment on XY and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are


Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].

 

Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.


Find the joint equation of pair of lines through the origin which is perpendicular to the lines represented by 5x2 + 2xy - 3y2 = 0 


Equation of a line passing through (1, 1, 1) and parallel to z-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×