English

Determine Whether the Following Pair of Lines Intersect Or Not: X − 5 4 = Y − 7 4 = Z + 3 − 5 a N D X − 8 7 = Y − 4 1 = 3 − 5 3 - Mathematics

Advertisements
Advertisements

Question

Determine whether the following pair of lines intersect or not:  

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]

Solution

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\] 

The coordinates of any point on the first line are given by

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} = \lambda\]

\[ \Rightarrow x = 4\lambda + 5\]

\[ y = 4\lambda + 7 \]

\[ z = - 5\lambda - 3\]

The coordinates of a general point on the first line are

\[\left( 4\lambda + 5, 4\lambda + 7, - 5\lambda - 3 \right)\]

The coordinates of any point on the second line are given by

\[\frac{x - 8}{7} = \frac{y - 4}{1} = \frac{z - 5}{3} = \mu\]

\[ \Rightarrow x = 7\mu + 8\]

\[ y = \mu + 4 \]

\[ z = 3\mu + 5\]

The coordinates of a general point on the second line are

\[\left( 7\mu + 8, \mu + 4, 3\mu + 5 \right)\]

If the lines intersect, then they have a common point. So, for some values of

\[\lambda \text{ and }  \mu\] we must have

\[4\lambda + 5 = 7\mu + 8, 4\lambda + 7 = \mu + 4, - 5\lambda - 3 = 3\mu + 5\]

\[ \Rightarrow 4\lambda - 7\mu = 3 . . . (1)\]

\[ 4\lambda - \mu = - 3 . . . (2)\]

\[ 5\lambda + 3\mu = - 8 . . . (3)\]

\[\text{ From (1) and (2), we get }\]

\[\lambda = - 1 \]

\[\mu = - 1\]

\[\text{ Substituting } \lambda = - 1 \text{ and \mu = - 1 in (3), we get} \]

\[LHS = 5\lambda + 3\mu \]

\[ = 5\left( - 1 \right) + 3\left( - 1 \right)\]

\[ = - 8\]

\[ = RHS\]

\[\text{ Since } \lambda = - 1 \text{ and \mu = - 1 satisfy (3), the lines intersect } . \]

\[\text{ Substituting } \lambda = - 1 \text{ and \mu = - 1 in the coordinates of a general point on the first line, we get } \]

\[x = 1\]

\[y = 3\]

\[z = 2\]

\[\text{ Hence, the given lines intersect at }  \left( 1, 3, 2 \right) .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Straight Line in Space - Exercise 28.3 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 28 Straight Line in Space
Exercise 28.3 | Q 6.4 | Page 22

RELATED QUESTIONS

The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.

 


Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.


Show that the three lines with direction cosines `12/13, (-3)/13, (-4)/13;  4/13, 12/13, 3/13;  3/13, (-4)/13, 12/13 ` are mutually perpendicular.


Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.


Find the equation of a line parallel to x-axis and passing through the origin.


A line passes through the point with position vector \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \] and is in the direction of  \[3 \hat{i} + 4 \hat{j} - 5 \hat{k} .\] Find equations of the line in vector and cartesian form. 


ABCD is a parallelogram. The position vectors of the points AB and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k}  \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\]  Find the vector equation of the line BD. Also, reduce it to cartesian form.


Find the vector equation of a line passing through (2, −1, 1) and parallel to the line whose equations are \[\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3} .\]


Find the points on the line \[\frac{x + 2}{3} = \frac{y + 1}{2} = \frac{z - 3}{2}\]  at a distance of 5 units from the point P (1, 3, 3).


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 3 \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 5 \hat{j} - 2 \hat{k}  \right) + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\]


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]

 


Find the angle between the following pair of line:

\[\frac{5 - x}{- 2} = \frac{y + 3}{1} = \frac{1 - z}{3} \text{  and  } \frac{x}{3} = \frac{1 - y}{- 2} = \frac{z + 5}{- 1}\]


Find the angle between the following pair of line:

\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]


Find the angle between the pairs of lines with direction ratios proportional to  1, 2, −2 and −2, 2, 1 .


Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line  \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]


Find the equation of the line passing through the point (1, −1, 1) and perpendicular to the lines joining the points (4, 3, 2), (1, −1, 0) and (1, 2, −1), (2, 1, 1).


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.


Show that the lines \[\frac{x - 1}{3} = \frac{y + 1}{2} = \frac{z - 1}{5} \text{           and                } \frac{x + 2}{4} = \frac{y - 1}{3} = \frac{z + 1}{- 2}\]  do not intersect. 


Determine whether the following pair of lines intersect or not: 

\[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} - \hat{j} \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


Show that the lines \[\vec{r} = 3 \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \vec{r} = 5 \hat{i} - 2 \hat{j}  + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] are intersecting. Hence, find their point of intersection.


Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3). 


Find the shortest distance between the following pairs of lines whose vector are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} + \hat{j} - \hat{k} + \mu\left( 3 \hat{i} - 5 \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\] 


Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{- 1} = \frac{y + 2}{1} = \frac{z - 3}{- 2} \text{ and } \frac{x - 1}{1} = \frac{y + 1}{2} = \frac{z + 1}{- 2}\]


By computing the shortest distance determine whether the following pairs of lines intersect or not  : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} - \hat{j}  \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


Write the vector equations of the following lines and hence determine the distance between them  \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z + 4}{6} \text{ and } \frac{x - 3}{4} = \frac{y - 3}{6} = \frac{z + 5}{12}\]


Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and }  \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]


Write the cartesian and vector equations of Y-axis.

 

Write the vector equation of a line passing through a point having position vector  \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .


Write the formula for the shortest distance between the lines 

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and }  \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\] 

 


The cartesian equations of a line AB are  \[\frac{2x - 1}{\sqrt{3}} = \frac{y + 2}{2} = \frac{z - 3}{3} .\]   Find the direction cosines of a line parallel to AB


Write the vector equation of a line given by \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]

 


The angle between the straight lines \[\frac{x + 1}{2} = \frac{y - 2}{5} = \frac{z + 3}{4} and \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z - 3}{- 3}\] is


The angle between the lines

\[\frac{x - 1}{1} = \frac{y - 1}{1} = \frac{z - 1}{2} \text{ and }, \frac{x - 1}{- \sqrt{3} - 1} = \frac{y - 1}{\sqrt{3} - 1} = \frac{z - 1}{4}\] is 

If a line makes angles α, β and γ with the axes respectively, then cos 2 α + cos 2 β + cos 2 γ =


The straight line \[\frac{x - 3}{3} = \frac{y - 2}{1} = \frac{z - 1}{0}\] is


The shortest distance between the lines  \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\] 

 

 

 

 


Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×