English

A Line Passes Through the Point with Position Vector 2 ^ I − 3 ^ J + 4 ^ K and is in the Direction of 3 ^ I + 4 ^ J − 5 ^ K . Find Equations of the Line in Vector and Cartesian Form. - Mathematics

Advertisements
Advertisements

Question

A line passes through the point with position vector \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \] and is in the direction of  \[3 \hat{i} + 4 \hat{j} - 5 \hat{k} .\] Find equations of the line in vector and cartesian form. 

Solution

We know that the vector equation of a line passing through a point with position vector `vec a` and parallel to the vector `vec b` is \[\vec{r} = \vec{a} + \lambda \vec{b}\]

Here,

\[\vec{a} = 2 \hat {i} - 3 \hat{j} + 4 \hat {k} \]

\[ \vec{b} = 3 \hat{i} + 4 \hat{j} - 5 \hat{k}\]

So, the vector equation of the required line is

\[\vec{r} = \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda \left( 3 \hat{i} + 4 \hat{j} - 5 \hat{k} \right) . . . (1)\]

\[\text{ Here }, \lambda \text { is a parameter }. \]

Reducing (1) to cartesian form, we get

\[x \hat{i} + y \hat{j} + z \hat{k} = \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda \left( 3 \hat{i} + 4 \hat{j} - 5 \hat{k} \right) [\text{ Putting } \vec{r} = x \hat{i} + y \hat{j}+ z \hat{k} \text{ in } (1)]\]

\[ \Rightarrow x \hat{i} + y \hat{j} + z \hat{k} = \left( 2 + 3\lambda \right) \hat{i} + \left( - 3 + 4\lambda \right) \hat{j} + \left( 4 - 5\lambda \right) \hat{k} \]

\[\text{ Comparing the coefficients of }  \hat{i} , \hat{j} \text{ and  } \hat{k} , \text{ we get } \]

\[x = 2 + 3\lambda, y = - 3 + 4\lambda, z = 4 - 5\lambda\]

\[ \Rightarrow \frac{x - 2}{3} = \lambda, \frac{y + 3}{4} = \lambda, \frac{z - 4}{- 5} = \lambda\]

\[ \Rightarrow \frac{x - 2}{3} = \frac{y + 3}{4} = \frac{z - 4}{- 5} = \lambda\]

\[\text{ Hence, the cartesian form of (1) is } \]

\[\frac{x - 2}{3} = \frac{y + 3}{4} = \frac{z - 4}{- 5}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Straight Line in Space - Exercise 28.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 28 Straight Line in Space
Exercise 28.1 | Q 4 | Page 9

RELATED QUESTIONS

The Cartestation equation of  line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.


Find the equation of the line in vector and in Cartesian form that passes through the point with position vector `2hati -hatj+4hatk`  and is in the direction `hati + 2hatj - hatk`.


Find the vector and the Cartesian equations of the line that passes through the points (3, −2, −5), (3, −2, 6).

 


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).


Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).


Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.


Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]


Find the angle between the pairs of lines with direction ratios proportional to  1, 2, −2 and −2, 2, 1 .


Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the  other one is obtained by joining the points (3, 1, 4) and (7, 2, 12). 


Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\] 


Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line  \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]


Find the equation of the line passing through the point (2, −1, 3) and parallel to the line  \[\overrightarrow{r} = \left( \hat{i} - 2 \hat{j} + \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} - 5 \hat{k} \right) .\]


Show that the lines \[\frac{x - 1}{3} = \frac{y + 1}{2} = \frac{z - 1}{5} \text{           and                } \frac{x + 2}{4} = \frac{y - 1}{3} = \frac{z + 1}{- 2}\]  do not intersect. 


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Find the perpendicular distance of the point (3, −1, 11) from the line \[\frac{x}{2} = \frac{y - 2}{- 3} = \frac{z - 3}{4} .\]


Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3). 


Find the foot of the perpendicular from (1, 2, −3) to the line \[\frac{x + 1}{2} = \frac{y - 3}{- 2} = \frac{z}{- 1} .\]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k}  \right) + \lambda\left( 2 \hat{i}  - 5 \hat{j} + 2 \hat{k}  \right) \text{ and }, \overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \mu\left( \hat{i} - \hat{j}  + \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose vector are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} + \hat{j} - \hat{k} + \mu\left( 3 \hat{i} - 5 \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} - \hat{j} - \hat{k} + \mu\left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = - 4 \hat{i}  - \hat{k}  + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k}  \right)\]


Write the cartesian and vector equations of X-axis.

 

Cartesian equations of a line AB are  \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\]   Write the direction ratios of a line parallel to AB.


Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.

 

Write the value of λ for which the lines  \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\]  are perpendicular to each other.


Write the condition for the lines  \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and  } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


The direction ratios of the line perpendicular to the lines \[\frac{x - 7}{2} = \frac{y + 17}{- 3} = \frac{z - 6}{1} \text{ and }, \frac{x + 5}{1} = \frac{y + 3}{2} = \frac{z - 4}{- 2}\] are proportional to


The angle between the lines

\[\frac{x - 1}{1} = \frac{y - 1}{1} = \frac{z - 1}{2} \text{ and }, \frac{x - 1}{- \sqrt{3} - 1} = \frac{y - 1}{\sqrt{3} - 1} = \frac{z - 1}{4}\] is 

The direction ratios of the line x − y + z − 5 = 0 = x − 3y − 6 are proportional to

 

 


If the direction ratios of a line are proportional to 1, −3, 2, then its direction cosines are

 


The straight line \[\frac{x - 3}{3} = \frac{y - 2}{1} = \frac{z - 1}{0}\] is


 The equation of a line is 2x -2 = 3y +1 = 6z -2 find the direction ratios and also find the vector equation of the line. 


Find the separate equations of the lines given by x2 + 2xy tan α − y2 = 0 


The equation of line passing through (3, -1, 2) and perpendicular to the lines `overline("r")=(hat"i"+hat"j"-hat"k")+lambda(2hat"i"-2hat"j"+hat"k")` and `overline("r")=(2hat"i"+hat"j"-3hat"k")+mu(hat"i"-2hat"j"+2hat"k")` is ______.


Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×