English

Find the vector equation of a line passing through a point with position vector 2i^-j^+k^ and parallel to the line joining the points -i^+4j^+k^ and -i^+2j^+2k^. - Mathematics

Advertisements
Advertisements

Question

Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.

Sum

Solution

Let A, B and C be the points with position vectors `2hati - hatj + hatk`, `-hati + 4hatj + hatk` and `hati + 2hatj + 2hatk`, respectively.

We have to find the equation of a line passing through the point A and parallel to vector BC.

Now, `vec(BC)` = Position vector of C – Position vector of `vecB`

= `(hati + 2hatj + 2hatk) - (-hati + 4hatj + hatk)`

= `2hati - 2hatj + hatk`

We know that, the equation of a line passing through a position vector `veca` and parallel to vector `vecb` is `vecr = veca + λvecb`

∴ `vecr = (2hati - hatj + hatk) + λ(2hati - 2hatj + hatk)` is the required equation of line in vector from.

[Here, `vec(BC) = vecb`]

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 - Delhi Set 2

RELATED QUESTIONS

If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


 

Find the value of p, so that the lines `l_1:(1-x)/3=(7y-14)/p=(z-3)/2 and l_2=(7-7x)/3p=(y-5)/1=(6-z)/5 ` are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, – 4) and parallel to line l1.

 

Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.


Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by `(x+3)/3 = (y-4)/5 = (z+8)/6`.


Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector  \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]


The cartesian equations of a line are x = ay + bz = cy + d. Find its direction ratios and reduce it to vector form. 


Find the points on the line \[\frac{x + 2}{3} = \frac{y + 1}{2} = \frac{z - 3}{2}\]  at a distance of 5 units from the point P (1, 3, 3).


Show that the three lines with direction cosines \[\frac{12}{13}, \frac{- 3}{13}, \frac{- 4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{- 4}{13}, \frac{12}{13}\] are mutually perpendicular. 


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1). 


Find the angle between the pairs of lines with direction ratios proportional to  2, 2, 1 and 4, 1, 8 .

 


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.


If the coordinates of the points ABCD be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\] 


Determine whether the following pair of lines intersect or not:  

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 3 \hat{i} + 5 \hat{j} + 7 \hat{k} \right) + \lambda\left( \hat{i} - 2 \hat{j} + 7 \hat{k} \right) \text{ and } \overrightarrow{r} = - \hat{i} - \hat{j} - \hat{k}  + \mu\left( 7 \hat{i}  - 6 \hat{j}  + \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 8 + 3\lambda \right) \hat{i} - \left( 9 + 16\lambda \right) \hat{j} + \left( 10 + 7\lambda \right) \hat{k} \]\[\overrightarrow{r} = 15 \hat{i} + 29 \hat{j} + 5 \hat{k} + \mu\left( 3 \hat{i}  + 8 \hat{j} - 5 \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are:  \[\frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} \text{ and } \frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1}\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 5}{4} = \frac{y - 7}{- 5} = \frac{z + 3}{- 5} \text{ and } \frac{x - 8}{7} = \frac{y - 7}{1} = \frac{z - 5}{3}\]


Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

Write the condition for the lines  \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and  } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.


The equations of a line are given by \[\frac{4 - x}{3} = \frac{y + 3}{3} = \frac{z + 2}{6} .\]  Write the direction cosines of a line parallel to this line.


The direction ratios of the line x − y + z − 5 = 0 = x − 3y − 6 are proportional to

 

 


The straight line \[\frac{x - 3}{3} = \frac{y - 2}{1} = \frac{z - 1}{0}\] is


 The equation of a line is 2x -2 = 3y +1 = 6z -2 find the direction ratios and also find the vector equation of the line. 


Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`


The equation 4x2 + 4xy + y2 = 0 represents two ______ 


Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______ 


If slopes of lines represented by kx2 - 4xy + y2 = 0 differ by 2, then k = ______ 


Find the equations of the diagonals of the parallelogram PQRS whose vertices are P(4, 2, – 6), Q(5, – 3, 1), R(12, 4, 5) and S(11, 9, – 2). Use these equations to find the point of intersection of diagonals.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×