Advertisements
Advertisements
प्रश्न
A line passes through the point with position vector \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \] and is in the direction of \[3 \hat{i} + 4 \hat{j} - 5 \hat{k} .\] Find equations of the line in vector and cartesian form.
उत्तर
We know that the vector equation of a line passing through a point with position vector `vec a` and parallel to the vector `vec b` is \[\vec{r} = \vec{a} + \lambda \vec{b}\]
Here,
\[\vec{a} = 2 \hat {i} - 3 \hat{j} + 4 \hat {k} \]
\[ \vec{b} = 3 \hat{i} + 4 \hat{j} - 5 \hat{k}\]
So, the vector equation of the required line is
\[\vec{r} = \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda \left( 3 \hat{i} + 4 \hat{j} - 5 \hat{k} \right) . . . (1)\]
\[\text{ Here }, \lambda \text { is a parameter }. \]
Reducing (1) to cartesian form, we get
\[x \hat{i} + y \hat{j} + z \hat{k} = \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda \left( 3 \hat{i} + 4 \hat{j} - 5 \hat{k} \right) [\text{ Putting } \vec{r} = x \hat{i} + y \hat{j}+ z \hat{k} \text{ in } (1)]\]
\[ \Rightarrow x \hat{i} + y \hat{j} + z \hat{k} = \left( 2 + 3\lambda \right) \hat{i} + \left( - 3 + 4\lambda \right) \hat{j} + \left( 4 - 5\lambda \right) \hat{k} \]
\[\text{ Comparing the coefficients of } \hat{i} , \hat{j} \text{ and } \hat{k} , \text{ we get } \]
\[x = 2 + 3\lambda, y = - 3 + 4\lambda, z = 4 - 5\lambda\]
\[ \Rightarrow \frac{x - 2}{3} = \lambda, \frac{y + 3}{4} = \lambda, \frac{z - 4}{- 5} = \lambda\]
\[ \Rightarrow \frac{x - 2}{3} = \frac{y + 3}{4} = \frac{z - 4}{- 5} = \lambda\]
\[\text{ Hence, the cartesian form of (1) is } \]
\[\frac{x - 2}{3} = \frac{y + 3}{4} = \frac{z - 4}{- 5}\]
संबंधित प्रश्न
The Cartestation equation of line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.
Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines
`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`
Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by `(x+3)/3 = (y-4)/5 = (z+8)/6`.
Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\] Reduce the corresponding equation in cartesian from.
Find the direction cosines of the line \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\] Also, reduce it to vector form.
Find the points on the line \[\frac{x + 2}{3} = \frac{y + 1}{2} = \frac{z - 3}{2}\] at a distance of 5 units from the point P (1, 3, 3).
The cartesian equation of a line are 3x + 1 = 6y − 2 = 1 − z. Find the fixed point through which it passes, its direction ratios and also its vector equation.
Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.
Find the angle between the following pair of line:
\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]
Find the angle between the following pair of line:
\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{ and } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]
Prove that the lines through A (0, −1, −1) and B (4, 5, 1) intersects the line through C (3, 9, 4) and D (−4, 4, 4). Also, find their point of intersection.
Determine whether the following pair of lines intersect or not:
\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]
Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3).
Find the foot of the perpendicular drawn from the point \[\hat{i} + 6 \hat{j} + 3 \hat{k} \] to the line \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) .\] Also, find the length of the perpendicular
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + 4 \hat{j} + 5 \hat{k} \right) + \mu\left( 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose vector are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} + \hat{j} - \hat{k} + \mu\left( 3 \hat{i} - 5 \hat{j} + 2 \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\]
Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k} \right) + \mu\left( - \hat{i} + \hat{j} - \hat{k} \right)\]
Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]
Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(i) (0, 0, 0) and (1, 0, 2)
Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(1, 3, 0) and (0, 3, 0)
Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]
Write the coordinate axis to which the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 1}{0}\] is perpendicular.
Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.
Write the value of λ for which the lines \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\] are perpendicular to each other.
Write the condition for the lines \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.
Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.
If a line makes angles α, β and γ with the axes respectively, then cos 2 α + cos 2 β + cos 2 γ =
If the direction ratios of a line are proportional to 1, −3, 2, then its direction cosines are
The projections of a line segment on X, Y and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are
Find the value of λ for which the following lines are perpendicular to each other:
`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`
If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k.
If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then
Find the joint equation of pair of lines through the origin which is perpendicular to the lines represented by 5x2 + 2xy - 3y2 = 0
P is a point on the line joining the points A(0, 5, −2) and B(3, −1, 2). If the x-coordinate of P is 6, then its z-coordinate is ______.
The lines `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` and `(x - 3)/1 = (y - k)/2 = z/1` intersect each other at point