Advertisements
Advertisements
प्रश्न
Write the value of λ for which the lines \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\] are perpendicular to each other.
उत्तर
We have ,
\[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \]
\[\frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\]
The given lines are parallel to vectors
\[\vec{b_1} = - 3 \hat{i} + 2\lambda \hat{j} + 2 \hat{k} \text{ and } \vec{b_2} = 3\lambda \hat{i} + \hat{j} - 5 \hat{k} \]
For \[\vec{b_1} \perp \vec{b_2}\]
we must have ,
\[\vec{b_1} . \vec{b_2} = 0\]
\[ \Rightarrow \left( - 3 \hat{i} + 2\lambda \hat{j} + 2 \hat{k} \right) . \left( 3\lambda \hat{i} + \hat{j} - 5 \hat{k} \right) = 0\]
\[ \Rightarrow - 7\lambda - 10 = 0\]
\[ \Rightarrow \lambda = - \frac{10}{7}\]
APPEARS IN
संबंधित प्रश्न
A line passes through (2, −1, 3) and is perpendicular to the lines `vecr=(hati+hatj-hatk)+lambda(2hati-2hatj+hatk) and vecr=(2hati-hatj-3hatk)+mu(hati+2hatj+2hatk)` . Obtain its equation in vector and Cartesian from.
Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by `(x+3)/3 = (y-4)/5 = (z+8)/6`.
The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\] Find a vector equation for the line.
Find the direction cosines of the line \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\] Also, reduce it to vector form.
Find the cartesian and vector equations of a line which passes through the point (1, 2, 3) and is parallel to the line \[\frac{- x - 2}{1} = \frac{y + 3}{7} = \frac{2z - 6}{3} .\]
Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.
Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text { and }\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.
Find the equation of a line parallel to x-axis and passing through the origin.
Find the angle between the following pair of line:
\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} \text { and } \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]
Find the angle between the following pair of line:
\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{- 3} \text { and } \frac{x + 3}{- 1} = \frac{y - 5}{8} = \frac{z - 1}{4}\]
Find the angle between the following pair of line:
\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]
Find the angle between the following pair of line:
\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{ and } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]
Find the angle between the pairs of lines with direction ratios proportional to 5, −12, 13 and −3, 4, 5
If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.
Find the direction cosines of the line
\[\frac{x + 2}{2} = \frac{2y - 7}{6} = \frac{5 - z}{6}\] Also, find the vector equation of the line through the point A(−1, 2, 3) and parallel to the given line.
Show that the lines \[\frac{x - 1}{3} = \frac{y + 1}{2} = \frac{z - 1}{5} \text{ and } \frac{x + 2}{4} = \frac{y - 1}{3} = \frac{z + 1}{- 2}\] do not intersect.
Find the foot of the perpendicular from (0, 2, 7) on the line \[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2} .\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 1 - t \right) \hat{i} + \left( t - 2 \right) \hat{j} + \left( 3 - t \right) \hat{k} \text{ and } \overrightarrow{r} = \left( s + 1 \right) \hat{i} + \left( 2s - 1 \right) \hat{j} - \left( 2s + 1 \right) \hat{k} \]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k} \right) + \lambda\left( 2 \hat{i} - 5 \hat{j} + 2 \hat{k} \right) \text{ and }, \overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \mu\left( \hat{i} - \hat{j} + \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 8 + 3\lambda \right) \hat{i} - \left( 9 + 16\lambda \right) \hat{j} + \left( 10 + 7\lambda \right) \hat{k} \]\[\overrightarrow{r} = 15 \hat{i} + 29 \hat{j} + 5 \hat{k} + \mu\left( 3 \hat{i} + 8 \hat{j} - 5 \hat{k} \right)\]
By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]
Find the shortest distance between the lines \[\overrightarrow{r} = \hat{i} + 2 \hat{j} + 3 \hat{k} + \lambda\left( \hat{i} - 3 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 4 \hat{i} + 5 \hat{j} + 6 \hat{k} + \mu\left( 2 \hat{i} + 3 \hat{j} + \hat{k} \right)\]
Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.
Write the formula for the shortest distance between the lines
\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\]
If the equations of a line AB are
\[\frac{3 - x}{1} = \frac{y + 2}{- 2} = \frac{z - 5}{4},\] write the direction ratios of a line parallel to AB.
Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.
The angle between the straight lines \[\frac{x + 1}{2} = \frac{y - 2}{5} = \frac{z + 3}{4} and \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z - 3}{- 3}\] is
If a line makes angle \[\frac{\pi}{3} \text{ and } \frac{\pi}{4}\] with x-axis and y-axis respectively, then the angle made by the line with z-axis is
The shortest distance between the lines \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\]
Find the value of p for which the following lines are perpendicular :
`(1-x)/3 = (2y-14)/(2p) = (z-3)/2 ; (1-x)/(3p) = (y-5)/1 = (6-z)/5`
Find the value of λ for which the following lines are perpendicular to each other:
`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`
Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.
If slopes of lines represented by kx2 - 4xy + y2 = 0 differ by 2, then k = ______
Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.
Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.
`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`
The lines `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` and `(x - 3)/1 = (y - k)/2 = z/1` intersect each other at point