English

Write the Vector Equation of a Line Passing Through a Point Having Position Vector → α and Parallel to Vector → β . - Mathematics

Advertisements
Advertisements

Question

Write the vector equation of a line passing through a point having position vector  \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .

Short Note

Solution

The vector equation of the line passing through the point having position vector  \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] is \[\overrightarrow{r} = \overrightarrow{\alpha} + \lambda \overrightarrow{\beta}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Straight Line in Space - Very Short Answers [Page 41]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 28 Straight Line in Space
Very Short Answers | Q 4 | Page 41

RELATED QUESTIONS

The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.


Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and is parallel to the line `(x+3)/3=(4-y)/5=(z+8)/6`


Find the separate equations of the lines represented by the equation 3x2 – 10xy – 8y2 = 0.


Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines

`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`


Find the vector and the Cartesian equations of the line that passes through the points (3, −2, −5), (3, −2, 6).

 


Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`


A line passes through the point with position vector \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \] and is in the direction of  \[3 \hat{i} + 4 \hat{j} - 5 \hat{k} .\] Find equations of the line in vector and cartesian form. 


Find the vector equation of a line passing through (2, −1, 1) and parallel to the line whose equations are \[\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3} .\]


Find the direction cosines of the line  \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\]  Also, reduce it to vector form. 


The cartesian equations of a line are x = ay + bz = cy + d. Find its direction ratios and reduce it to vector form. 


Find the cartesian and vector equations of a line which passes through the point (1, 2, 3) and is parallel to the line  \[\frac{- x - 2}{1} = \frac{y + 3}{7} = \frac{2z - 6}{3} .\] 


Show that the three lines with direction cosines \[\frac{12}{13}, \frac{- 3}{13}, \frac{- 4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{- 4}{13}, \frac{12}{13}\] are mutually perpendicular. 


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1). 


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]


Find the angle between the following pair of line:

\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]


Find the equations of the line passing through the point (2, 1, 3) and perpendicular to the lines  \[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \text{  and  } \frac{x}{- 3} = \frac{y}{2} = \frac{z}{5}\]


If the coordinates of the points ABCD be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD


Find the value of λ so that the following lines are perpendicular to each other. \[\frac{x - 5}{5\lambda + 2} = \frac{2 - y}{5} = \frac{1 - z}{- 1}, \frac{x}{1} = \frac{2y + 1}{4\lambda} = \frac{1 - z}{- 3}\]


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j}  + 4 \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} + 4 \hat{j} + 5 \hat{k} \right) + \mu\left( 3 \hat{i}  + 4 \hat{j}  + 5 \hat{k} \right)\]


Find the shortest distance between the following pairs of lines whose vector are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} + \hat{j} - \hat{k} + \mu\left( 3 \hat{i} - 5 \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{- 1} = \frac{y + 2}{1} = \frac{z - 3}{- 2} \text{ and } \frac{x - 1}{1} = \frac{y + 1}{2} = \frac{z + 1}{- 2}\]


Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = - 4 \hat{i}  - \hat{k}  + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k}  \right)\]


Write the cartesian and vector equations of X-axis.

 

Write the cartesian and vector equations of Z-axis.

 

Write the coordinate axis to which the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 1}{0}\]  is  perpendicular.


Write the value of λ for which the lines  \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\]  are perpendicular to each other.


The cartesian equations of a line AB are  \[\frac{2x - 1}{\sqrt{3}} = \frac{y + 2}{2} = \frac{z - 3}{3} .\]   Find the direction cosines of a line parallel to AB


The direction ratios of the line perpendicular to the lines \[\frac{x - 7}{2} = \frac{y + 17}{- 3} = \frac{z - 6}{1} \text{ and }, \frac{x + 5}{1} = \frac{y + 3}{2} = \frac{z - 4}{- 2}\] are proportional to


If a line makes angles α, β and γ with the axes respectively, then cos 2 α + cos 2 β + cos 2 γ =


The shortest distance between the lines  \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\] 

 

 

 

 


 The equation of a line is 2x -2 = 3y +1 = 6z -2 find the direction ratios and also find the vector equation of the line. 


Find the value of p for which the following lines are perpendicular : 

`(1-x)/3 = (2y-14)/(2p) = (z-3)/2 ; (1-x)/(3p) = (y-5)/1 = (6-z)/5`


Find the joint equation of pair of lines through the origin which is perpendicular to the lines represented by 5x2 + 2xy - 3y2 = 0 


The equation of line passing through (3, -1, 2) and perpendicular to the lines `overline("r")=(hat"i"+hat"j"-hat"k")+lambda(2hat"i"-2hat"j"+hat"k")` and `overline("r")=(2hat"i"+hat"j"-3hat"k")+mu(hat"i"-2hat"j"+2hat"k")` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×