Advertisements
Advertisements
Question
Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines
`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`
Solution
Let the D.R’s of the required line be a,b , c
`therefore a+2b+3c=0 and -3a+2b+5c=0`
`=>a/4=b/(-14)=c/8`
therefore DRS are 2,-7,4
Equations of line are `(x-2)/2=(y-1)/(-7)=(z-3)/4`
which is in vector form is, ` vecr=(2hati+hatj+3hatk)+lambda(2hati-7hati+4hatk)`
APPEARS IN
RELATED QUESTIONS
The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.
Find the separate equations of the lines represented by the equation 3x2 – 10xy – 8y2 = 0.
Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XZ plane. Also find the angle which this line makes with the XZ plane.
Find the vector and Cartesian equations of the line through the point (1, 2, −4) and perpendicular to the two lines.
`vecr=(8hati-19hatj+10hatk)+lambda(3hati-16hatj+7hatk) " and "vecr=(15hati+29hatj+5hatk)+mu(3hati+8hatj-5hatk)`
Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`
Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]
Find the cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by \[\frac{x + 3}{3} = \frac{y - 4}{5} = \frac{z + 8}{6} .\]
Find the angle between the following pair of line:
\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{- 3} \text { and } \frac{x + 3}{- 1} = \frac{y - 5}{8} = \frac{z - 1}{4}\]
Find the angle between the pairs of lines with direction ratios proportional to 1, 2, −2 and −2, 2, 1 .
Show that the lines \[\frac{x - 1}{3} = \frac{y + 1}{2} = \frac{z - 1}{5} \text{ and } \frac{x + 2}{4} = \frac{y - 1}{3} = \frac{z + 1}{- 2}\] do not intersect.
Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{ and } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\] intersect. Find their point of intersection.
Determine whether the following pair of lines intersect or not:
\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]
A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D.
Find the foot of perpendicular from the point (2, 3, 4) to the line \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\] Also, find the perpendicular distance from the given point to the line.
Find the length of the perpendicular drawn from the point (5, 4, −1) to the line \[\overrightarrow{r} = \hat{i} + \lambda\left( 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \right) .\]
Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{- 1} = \frac{y + 2}{1} = \frac{z - 3}{- 2} \text{ and } \frac{x - 1}{1} = \frac{y + 1}{2} = \frac{z + 1}{- 2}\]
Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} \text{ and } \frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1}\]
Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]
Find the distance between the lines l1 and l2 given by \[\overrightarrow{r} = \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right) \text{ and } , \overrightarrow{r} = 3 \hat{i} + 3 \hat{j} - 5 \hat{k} + \mu\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right)\]
Write the vector equation of a line passing through a point having position vector \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .
The cartesian equations of a line AB are \[\frac{2x - 1}{\sqrt{3}} = \frac{y + 2}{2} = \frac{z - 3}{3} .\] Find the direction cosines of a line parallel to AB.
Find the Cartesian equations of the line which passes through the point (−2, 4 , −5) and is parallel to the line \[\frac{x + 3}{3} = \frac{4 - y}{5} = \frac{z + 8}{6} .\]
The angle between the lines
The perpendicular distance of the point P (1, 2, 3) from the line \[\frac{x - 6}{3} = \frac{y - 7}{2} = \frac{z - 7}{- 2}\] is
If a line makes angle \[\frac{\pi}{3} \text{ and } \frac{\pi}{4}\] with x-axis and y-axis respectively, then the angle made by the line with z-axis is
The lines \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3} \text { and } \frac{x - 1}{- 2} = \frac{y - 2}{- 4} = \frac{z - 3}{- 6}\]
If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k.
Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.
If slopes of lines represented by kx2 - 4xy + y2 = 0 differ by 2, then k = ______
Find the vector equation of the lines passing through the point having position vector `(-hati - hatj + 2hatk)` and parallel to the line `vecr = (hati + 2hatj + 3hatk) + λ(3hati + 2hatj + hatk)`.