English

Show that the Lines X + 1 3 = Y + 3 5 = Z + 5 7 a N D X − 2 1 = Y − 4 3 = Z − 6 5 Intersect. Find Their Point of Intersection. - Mathematics

Advertisements
Advertisements

Question

Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{           and                  } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\]   intersect. Find their point of intersection.

Sum

Solution

The coordinates of any point on the first line are given by 

\[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} = \lambda\]

\[ \Rightarrow x = 3\lambda - 1\]

\[ y = 5\lambda - 3\]

\[ z = 7\lambda - 5\] 

The coordinates of a general point on the first line are 

\[\left( 3\lambda - 1, 5\lambda - 3, 7\lambda - 5 \right)\] 

The coordinates of any point on the second line are given by 

\[\frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5} = \mu\]

\[ \Rightarrow x = \mu + 2\]

\[ y = 3\mu + 4 \]

\[ z = 5\mu + 6\]

The coordinates of a general point on the second line are

\[\left( \mu + 2, 3\mu + 4, 5\mu + 6 \right)\] 

If the lines intersect, then they have a common point. So, for some values of  \[\lambda \text{ and } \mu\] we must have ,

\[3\lambda - 1 = \mu + 2, 5\lambda - 3 = 3\mu + 4, 7\lambda - 5 = 5\mu + 6\]

\[ \Rightarrow 3\lambda - \mu = 3 . . . (1)\]

\[ 5\lambda - 3\mu = 7 . . . (2)\]

\[ 7\lambda - 5\mu = 11 . . . (3)\]

\[\text{ Solving (1) and (2), we get } \]

\[\lambda = \frac{1}{2} \]

\[\mu = - \frac{3}{2}\]

\[\text { Substituting }  \lambda = \frac{1}{2} \text{ and } \mu = - \frac{3}{2} \text { in (3), we get } \]

\[LHS = 7\lambda - 5\mu\]

\[ = 7\left( \frac{1}{2} \right) - 5\left( - \frac{3}{2} \right)\]

\[ = 11\]

\[ = RHS\]

\[\text{ Since } \lambda = \frac{1}{2} \text{ and } \mu = - \frac{3}{2} \text{ satisfy (3), the given lines intersect .}  \]

\[\text{ Substituting the value of       } \lambda \text{ in the general coordinates of the first line, we get } \]

\[x = \frac{1}{2}\]

\[y = - \frac{1}{2}\]

\[z = - \frac{3}{2}\]

\[\text{ Hence, the given lines intersect at point }  \left( \frac{1}{2}, - \frac{1}{2}, - \frac{3}{2} \right) .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Straight Line in Space - Exercise 28.3 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 28 Straight Line in Space
Exercise 28.3 | Q 3 | Page 22

RELATED QUESTIONS

The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.

 


Find the separate equations of the lines represented by the equation 3x2 – 10xy – 8y2 = 0.


The Cartestation equation of  line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.


Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.


Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by `(x+3)/3 = (y-4)/5 = (z+8)/6`.


The Cartesian equation of a line is `(x-5)/3 = (y+4)/7 = (z-6)/2` Write its vector form.


Show that the lines `(x-5)/7 = (y + 2)/(-5) = z/1` and `x/1 = y/2 = z/3` are perpendicular to each other.


Find the equation of a line parallel to x-axis and passing through the origin.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).


Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`


Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector  \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]


Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.


Find the angle between the following pair of line:

\[\frac{- x + 2}{- 2} = \frac{y - 1}{7} = \frac{z + 3}{- 3} \text{  and  } \frac{x + 2}{- 1} = \frac{2y - 8}{4} = \frac{z - 5}{4}\]


Find the angle between the pairs of lines with direction ratios proportional to 5, −12, 13 and −3, 4, 5


Find the angle between the pairs of lines with direction ratios proportional to  1, 2, −2 and −2, 2, 1 .


Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the  other one is obtained by joining the points (3, 1, 4) and (7, 2, 12). 


Find the equation of the line passing through the point  \[\hat{i}  + \hat{j}  - 3 \hat{k} \] and perpendicular to the lines  \[\overrightarrow{r} = \hat{i}  + \lambda\left( 2 \hat{i} + \hat{j}  - 3 \hat{k}  \right) \text { and }  \overrightarrow{r} = \left( 2 \hat{i}  + \hat{j}  - \hat{ k}  \right) + \mu\left( \hat{i}  + \hat{j}  + \hat{k}  \right) .\]

  

 

 

 


Show that the lines \[\frac{x - 1}{3} = \frac{y + 1}{2} = \frac{z - 1}{5} \text{           and                } \frac{x + 2}{4} = \frac{y - 1}{3} = \frac{z + 1}{- 2}\]  do not intersect. 


Determine whether the following pair of lines intersect or not:  

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]


Show that the lines \[\vec{r} = 3 \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \vec{r} = 5 \hat{i} - 2 \hat{j}  + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] are intersecting. Hence, find their point of intersection.


Find the foot of the perpendicular drawn from the point  \[\hat{i} + 6 \hat{j} + 3 \hat{k} \]  to the line  \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k}  \right) .\]  Also, find the length of the perpendicular


Find the foot of the perpendicular from (0, 2, 7) on the line \[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2} .\]


Find the foot of the perpendicular from (1, 2, −3) to the line \[\frac{x + 1}{2} = \frac{y - 3}{- 2} = \frac{z}{- 1} .\]


Find the distance of the point (2, 4, −1) from the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9}\] 


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 3 \hat{i} + 5 \hat{j} + 7 \hat{k} \right) + \lambda\left( \hat{i} - 2 \hat{j} + 7 \hat{k} \right) \text{ and } \overrightarrow{r} = - \hat{i} - \hat{j} - \hat{k}  + \mu\left( 7 \hat{i}  - 6 \hat{j}  + \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j}  + 4 \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} + 4 \hat{j} + 5 \hat{k} \right) + \mu\left( 3 \hat{i}  + 4 \hat{j}  + 5 \hat{k} \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{3} = \frac{y - 2}{1}; z = 2\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} - \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \overrightarrow{r} = \left( 4 \hat{i} - \hat{k}  \right) + \mu\left( 2 \hat{i}  + 3 \hat{k} \right)\] 


Cartesian equations of a line AB are  \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\]   Write the direction ratios of a line parallel to AB.


Write the value of λ for which the lines  \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\]  are perpendicular to each other.


The equations of a line are given by \[\frac{4 - x}{3} = \frac{y + 3}{3} = \frac{z + 2}{6} .\]  Write the direction cosines of a line parallel to this line.


Find the angle between the lines 

\[\vec{r} = \left( 2 \hat{i}  - 5 \hat{j}  + \hat{k}  \right) + \lambda\left( 3 \hat{i}  + 2 \hat{j}  + 6 \hat{k}  \right)\] and \[\vec{r} = 7 \hat{i} - 6 \hat{k}  + \mu\left( \hat{i}  + 2 \hat{j}  + 2 \hat{k}  \right)\] 


The angle between the straight lines \[\frac{x + 1}{2} = \frac{y - 2}{5} = \frac{z + 3}{4} and \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z - 3}{- 3}\] is


The perpendicular distance of the point P (1, 2, 3) from the line \[\frac{x - 6}{3} = \frac{y - 7}{2} = \frac{z - 7}{- 2}\] is 

 


The equation of the line passing through the points \[a_1 \hat{i}  + a_2 \hat{j}  + a_3 \hat{k}  \text{ and }  b_1 \hat{i} + b_2 \hat{j}  + b_3 \hat{k} \]  is 


Choose correct alternatives:

The difference between the slopes of the lines represented by 3x2 - 4xy + y2 = 0 is 2


Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______ 


If 2x + y = 0 is one of the line represented by 3x2 + kxy + 2y2 = 0 then k = ______ 


Find the joint equation of pair of lines through the origin which is perpendicular to the lines represented by 5x2 + 2xy - 3y2 = 0 


Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×