Advertisements
Advertisements
Question
The equation of the line passing through the points \[a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \text{ and } b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \] is
Options
\[\overrightarrow{r} = \left( a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \right) + \lambda \left( b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \right)\]
\[\overrightarrow{r} = \left( a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \right) - t \left( b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \right)\]
\[\overrightarrow{r} = a_1 \left( 1 - t \right) \hat{i} + a_2 \left( 1 - t \right) \hat{j} + a_3 \left( 1 - t \right) \hat{k} + t \left( b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \right)\]
none of these
Solution
\[\overrightarrow{r} = a_1 \left( 1 - t \right) \hat{i} + a_2 \left( 1 - t \right) \hat{j} + a_3 \left( 1 - t \right) \hat{k} + t \left( b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \right)\]
Equation of the line passing through the points having position vectors
\[a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \text{ and } b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \] is
\[\overrightarrow{r} = \left( a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \right) + t\left\{ \left( b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \right) - \left( a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \right) \right\}, \text{ where t is a parameter } \]
\[ = \left( a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \right) - t\left( a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \right) + t\left( b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \right)\]
\[ = a_1 \left( 1 - t \right) \hat{i} + a_2 \left( 1 - t \right) \hat{j} + a_3 \left( 1 - t \right) \hat{k} + t\left( b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \right)\]
APPEARS IN
RELATED QUESTIONS
Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and is parallel to the line `(x+3)/3=(4-y)/5=(z+8)/6`
Find the vector and Cartesian equations of the line through the point (1, 2, −4) and perpendicular to the two lines.
`vecr=(8hati-19hatj+10hatk)+lambda(3hati-16hatj+7hatk) " and "vecr=(15hati+29hatj+5hatk)+mu(3hati+8hatj-5hatk)`
Show that the three lines with direction cosines `12/13, (-3)/13, (-4)/13; 4/13, 12/13, 3/13; 3/13, (-4)/13, 12/13 ` are mutually perpendicular.
Show that the line through the points (4, 7, 8) (2, 3, 4) is parallel to the line through the points (−1, −2, 1), (1, 2, 5).
Find the equation of the line in vector and in Cartesian form that passes through the point with position vector `2hati -hatj+4hatk` and is in the direction `hati + 2hatj - hatk`.
Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by `(x+3)/3 = (y-4)/5 = (z+8)/6`.
Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).
Find the vector and the Cartesian equations of the line that passes through the points (3, −2, −5), (3, −2, 6).
Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`
Find the vector equation of a line passing through (2, −1, 1) and parallel to the line whose equations are \[\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3} .\]
Show that the points whose position vectors are \[- 2 \hat{i} + 3 \hat{j} , \hat{i} + 2 \hat{j} + 3 \hat{k} \text{ and } 7 \text{ i} - \text{ k} \] are collinear.
The cartesian equation of a line are 3x + 1 = 6y − 2 = 1 − z. Find the fixed point through which it passes, its direction ratios and also its vector equation.
Find the angle between the following pair of line:
\[\overrightarrow{r} = \left( 3 \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 5 \hat{j} - 2 \hat{k} \right) + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\]
Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]
Find the equations of the line passing through the point (2, 1, 3) and perpendicular to the lines \[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \text{ and } \frac{x}{- 3} = \frac{y}{2} = \frac{z}{5}\]
Find the equation of the line passing through the point \[\hat{i} + \hat{j} - 3 \hat{k} \] and perpendicular to the lines \[\overrightarrow{r} = \hat{i} + \lambda\left( 2 \hat{i} + \hat{j} - 3 \hat{k} \right) \text { and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{ k} \right) + \mu\left( \hat{i} + \hat{j} + \hat{k} \right) .\]
If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.
Find the perpendicular distance of the point (1, 0, 0) from the line \[\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z + 10}{8}.\] Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.
Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3).
Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD.
Find the distance of the point (2, 4, −1) from the line \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9}\]
Find the coordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, −1, 3) and C(2, −3, −1).
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k} \right) + \lambda\left( 2 \hat{i} - 5 \hat{j} + 2 \hat{k} \right) \text{ and }, \overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \mu\left( \hat{i} - \hat{j} + \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 8 + 3\lambda \right) \hat{i} - \left( 9 + 16\lambda \right) \hat{j} + \left( 10 + 7\lambda \right) \hat{k} \]\[\overrightarrow{r} = 15 \hat{i} + 29 \hat{j} + 5 \hat{k} + \mu\left( 3 \hat{i} + 8 \hat{j} - 5 \hat{k} \right)\]
By computing the shortest distance determine whether the following pairs of lines intersect or not : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} - \hat{j} \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]
By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]
Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(1, 3, 0) and (0, 3, 0)
Write the cartesian and vector equations of Z-axis.
Write the vector equation of a line passing through a point having position vector \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .
Write the direction cosines of the line \[\frac{x - 2}{2} = \frac{2y - 5}{- 3}, z = 2 .\]
Write the angle between the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z - 2}{1} \text{ and } \frac{x - 1}{1} = \frac{y}{2} = \frac{z - 1}{3} .\]
Write the condition for the lines \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.
The lines `x/1 = y/2 = z/3 and (x - 1)/-2 = (y - 2)/-4 = (z - 3)/-6` are
The angle between the lines
Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.
The equation of a line is 2x -2 = 3y +1 = 6z -2 find the direction ratios and also find the vector equation of the line.
Choose correct alternatives:
If the equation 4x2 + hxy + y2 = 0 represents two coincident lines, then h = _______
Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.