English

Show that the Points Whose Position Vectors Are − 2 ^ I + 3 ^ J , ^ I + 2 ^ J + 3 ^ K and 7 I − K Are Collinear. - Mathematics

Advertisements
Advertisements

Question

Show that the points whose position vectors are  \[- 2 \hat{i} + 3 \hat{j} , \hat{i} + 2 \hat{j} + 3 \hat{k}  \text{ and }  7 \text{ i}  - \text{ k} \]  are collinear.

Sum

Solution

Let the given points be PQ and R and let their position vectors be  \[\overrightarrow{a} , \overrightarrow{b} \text { and } \overrightarrow{c} , \text{ respectively } . \] 

\[\overrightarrow{a} = - 2 \hat{i} + 3 \hat{j} \]

\[ \overrightarrow{b} = \hat{i} + 2 \hat{j} + 3 \hat{k}  \]

\[ \overrightarrow{c} = 7 \hat{i} + 9 \hat{k} \] 

Vector equation of line passing through P and Q is 

\[\overrightarrow{r} = \overrightarrow{a} + \lambda\left( \overrightarrow{b} - \overrightarrow{a} \right)\]

\[ \Rightarrow \overrightarrow{r} = \left( - 2 \hat{i} + 3 \hat{j}
 \right) + \lambda\left\{ \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) - \left( - 2 \hat{i} + 3 \hat{j}  \right) \right\}\]

\[ \Rightarrow \vec{r} = \left( - 2 \hat{i} + 3 \hat{j} \right) + \lambda\left( 3 \hat{i} - \hat{j} + 3 \hat{k}  \right) . . . (1)\] 

If points P, Q and R are collinear, then point R must satisfy (1). 

\[\text{ Replacing } \overrightarrow{r} \text{ by } \overrightarrow{c} = 7 \hat{i} + 9 \hat{k}  \text{ in }  (1), \text { we get } \]

\[7 \hat{i} + 9 \hat{k}  = \left( - 2 \hat{i} + 3 \hat{j}  \right) + \lambda\left( 3 \hat{i}  - \hat{j}  + 3 \hat{k}  \right)\] 

Comparing the coefficients of  \[\hat{i}  , \hat{j}  \text{ and }  \hat{k}\] 

we get

\[7 = - 2 + 3\lambda, 0 = 3 - \lambda, 9 = 3\lambda\] 

∴ \[\lambda\] = 3 

These three equations are consistent, i.e. they give the same value of  \[\lambda\]  Hence, the given three points are collinear. 

Disclaimer: The question given in the book has a minor error. The third vectors should be    \[7 \hat{i }+ 9 \hat{k} \]  The solution here is created accordingly. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Straight Line in Space - Exercise 28.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 28 Straight Line in Space
Exercise 28.1 | Q 15 | Page 10

RELATED QUESTIONS

If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.


The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.

 


If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


The Cartesian equation of a line is `(x-5)/3 = (y+4)/7 = (z-6)/2` Write its vector form.


Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).


A line passes through the point with position vector \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \] and is in the direction of  \[3 \hat{i} + 4 \hat{j} - 5 \hat{k} .\] Find equations of the line in vector and cartesian form. 


Find the cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by  \[\frac{x + 3}{3} = \frac{y - 4}{5} = \frac{z + 8}{6} .\]


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 3 \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 5 \hat{j} - 2 \hat{k}  \right) + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\]


Find the angle between the following pair of line:

\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} \text  { and }  \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]


Find the angle between the following pair of line:

\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{  and  } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]


Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the  other one is obtained by joining the points (3, 1, 4) and (7, 2, 12). 


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.


Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{           and                  } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\]   intersect. Find their point of intersection.


Prove that the lines through A (0, −1, −1) and B (4, 5, 1) intersects the line through C (3, 9, 4) and D (−4, 4, 4). Also, find their point of intersection. 


Determine whether the following pair of lines intersect or not:  

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]


Find the perpendicular distance of the point (3, −1, 11) from the line \[\frac{x}{2} = \frac{y - 2}{- 3} = \frac{z - 3}{4} .\]


Find the equation of the perpendicular drawn from the point P (2, 4, −1) to the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9} .\]  Also, write down the coordinates of the foot of the perpendicular from P


Find the foot of the perpendicular drawn from the point  \[\hat{i} + 6 \hat{j} + 3 \hat{k} \]  to the line  \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k}  \right) .\]  Also, find the length of the perpendicular


Find the distance of the point (2, 4, −1) from the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9}\] 


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \lambda - 1 \right) \hat{i} + \left( \lambda + 1 \right) \hat{j}  - \left( 1 + \lambda \right) \hat{k}  \text{ and }  \overrightarrow{r} = \left( 1 - \mu \right) \hat{i}  + \left( 2\mu - 1 \right) \hat{j}  + \left( \mu + 2 \right) \hat{k} \]


Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]


Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines

 (1, 3, 0) and (0, 3, 0)


Find the shortest distance between the lines \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} - \hat{j} - \hat{k} + \mu\left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = \hat{i} + 2 \hat{j} + 3 \hat{k} + \lambda\left( \hat{i} - 3 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = 4 \hat{i} + 5 \hat{j}  + 6 \hat{k} + \mu\left( 2 \hat{i} + 3 \hat{j} + \hat{k} \right)\]


Write the cartesian and vector equations of Z-axis.

 

Cartesian equations of a line AB are  \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\]   Write the direction ratios of a line parallel to AB.


Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

The angle between the straight lines \[\frac{x + 1}{2} = \frac{y - 2}{5} = \frac{z + 3}{4} and \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z - 3}{- 3}\] is


Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`


Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.


The equation 4x2 + 4xy + y2 = 0 represents two ______ 


If 2x + y = 0 is one of the line represented by 3x2 + kxy + 2y2 = 0 then k = ______ 


Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.


The lines `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` and `(x - 3)/1 = (y - k)/2 = z/1` intersect each other at point


A line passes through the point (2, – 1, 3) and is perpendicular to the lines `vecr = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `vecr = (2hati - hatj - 3hatk) + μ(hati + 2hatj + 2hatk)` obtain its equation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×