English

Find the Foot of the Perpendicular Drawn from the Point ^ I + 6 ^ J + 3 ^ K to the Line → R = ^ J + 2 ^ K + λ ( ^ I + 2 ^ J + 3 ^ K ) . Also, Find the Length of the Perpendicular - Mathematics

Advertisements
Advertisements

Question

Find the foot of the perpendicular drawn from the point  \[\hat{i} + 6 \hat{j} + 3 \hat{k} \]  to the line  \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k}  \right) .\]  Also, find the length of the perpendicular

Sum

Solution

Let L be the foot of the perpendicular drawn from the point P ( \[\hat{i} + 6 \hat{j} + 3 \hat{k}\] ) to the line \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k}  \right) .\] 

Let the position vector L be  \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k} \right) = \lambda \hat{i} + \left( 1 + 2\lambda \right) \hat{j} + \left( 2 + 3\lambda \right) \hat{k} \] 

Now, 

\[\overrightarrow{PL} = \text{ Position vector of L - Position vector of P } \]

\[ \Rightarrow \overrightarrow{PL} = \left\{ \lambda \hat{i} + \left( 1 + 2\lambda \right) \hat{j} + \left( 2 + 3\lambda \right) \hat{k} \right\} - \left( \hat{i}  + 6 \hat{j}  + 3 \hat{k}  \right)\]

\[ \Rightarrow \overrightarrow{PL} = \left( \lambda - 1 \right) \hat{i} + \left( 2\lambda - 5 \right) \hat{j} + \left( 3\lambda - 1 \right) \hat{k} . . . (2)\]

Since

\[\overrightarrow{PL}\]  is perpendicular to the given line, which is parallel to  \[\overrightarrow{b} = \hat{i} + 2 \hat{j} + 3 \hat{k} \]   

we have  , 

\[\overrightarrow{PL} . \overrightarrow{b} = 0\]

\[ \Rightarrow \left\{ \left( \lambda - 1 \right) \hat{i} + \left( 2\lambda - 5 \right) \hat{j} + \left( 3\lambda - 1 \right) \hat{k} \right\} . \left( \hat{i}  + 2 \hat{j} + 3 \hat{k}  \right) = 0 \]

\[ \Rightarrow 1\left( \lambda - 1 \right) + 2\left( 2\lambda - 5 \right) + 3\left( 3\lambda - 1 \right) = 0\]

\[ \Rightarrow \lambda = 1\]

Substituting  \[\lambda = 1\]   in (1),

we get the position vector of as \[\hat{i}  + 3 \hat{j} + 5 \hat{k}\] 

Substituting  \[\lambda = 1\] in (2),

we get  , \[\overrightarrow{PL} = - 3 \hat{j} + 2 \hat{k}\]

\[= \sqrt{\left( - 3 \right)^2 + 2^2}\]

\[ = \sqrt{13}\]

Hence, the length of the perpendicular from point P on PL is \[\sqrt{13} \text{ units} \] .

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Straight Line in Space - Exercise 28.4 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 28 Straight Line in Space
Exercise 28.4 | Q 8 | Page 30

RELATED QUESTIONS

If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.


Find the separate equations of the lines represented by the equation 3x2 – 10xy – 8y2 = 0.


Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XZ plane. Also find the angle which this line makes with the XZ plane.


Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines

`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`


Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Show that the line through the points (4, 7, 8) (2, 3, 4) is parallel to the line through the points (−1, −2, 1), (1, 2, 5).


Show that the lines `(x-5)/7 = (y + 2)/(-5) = z/1` and `x/1 = y/2 = z/3` are perpendicular to each other.


Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`


Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the through the points (0, 3, 2) and (3, 5, 6).


Find the cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by  \[\frac{x + 3}{3} = \frac{y - 4}{5} = \frac{z + 8}{6} .\]


Find the equation of a line parallel to x-axis and passing through the origin.


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 3 \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 5 \hat{j} - 2 \hat{k}  \right) + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\]


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]

 


Find the angle between the following pair of line:

\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]


Find the angle between the pairs of lines with direction ratios proportional to  2, 2, 1 and 4, 1, 8 .

 


Find the angle between the pairs of lines with direction ratios proportional to  1, 2, −2 and −2, 2, 1 .


Find the angle between the pairs of lines with direction ratios proportional to   abc and b − cc − aa − b.


Find the equations of the line passing through the point (2, 1, 3) and perpendicular to the lines  \[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \text{  and  } \frac{x}{- 3} = \frac{y}{2} = \frac{z}{5}\]


Find the perpendicular distance of the point (3, −1, 11) from the line \[\frac{x}{2} = \frac{y - 2}{- 3} = \frac{z - 3}{4} .\]


Find the perpendicular distance of the point (1, 0, 0) from the line  \[\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z + 10}{8}.\] Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.


Find the equation of the perpendicular drawn from the point P (2, 4, −1) to the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9} .\]  Also, write down the coordinates of the foot of the perpendicular from P


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 1 - t \right) \hat{i} + \left( t - 2 \right) \hat{j} + \left( 3 - t \right) \hat{k}  \text{ and }  \overrightarrow{r} = \left( s + 1 \right) \hat{i}  + \left( 2s - 1 \right) \hat{j}  - \left( 2s + 1 \right) \hat{k} \]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \lambda - 1 \right) \hat{i} + \left( \lambda + 1 \right) \hat{j}  - \left( 1 + \lambda \right) \hat{k}  \text{ and }  \overrightarrow{r} = \left( 1 - \mu \right) \hat{i}  + \left( 2\mu - 1 \right) \hat{j}  + \left( \mu + 2 \right) \hat{k} \]


Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\] 


Write the cartesian and vector equations of X-axis.

 

The angle between the straight lines \[\frac{x + 1}{2} = \frac{y - 2}{5} = \frac{z + 3}{4} and \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z - 3}{- 3}\] is


The lines `x/1 = y/2 = z/3 and (x - 1)/-2 = (y - 2)/-4 = (z - 3)/-6` are


The lines  \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3} \text { and } \frac{x - 1}{- 2} = \frac{y - 2}{- 4} = \frac{z - 3}{- 6}\] 

 


The shortest distance between the lines  \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\] 

 

 

 

 


 The equation of a line is 2x -2 = 3y +1 = 6z -2 find the direction ratios and also find the vector equation of the line. 


Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`


Choose correct alternatives:

The difference between the slopes of the lines represented by 3x2 - 4xy + y2 = 0 is 2


Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______ 


Find the separate equations of the lines given by x2 + 2xy tan α − y2 = 0 


If slopes of lines represented by kx2 - 4xy + y2 = 0 differ by 2, then k = ______ 


P is a point on the line joining the points A(0, 5, −2) and B(3, −1, 2). If the x-coordinate of P is 6, then its z-coordinate is ______.


Find the vector equation of the lines passing through the point having position vector `(-hati - hatj + 2hatk)` and parallel to the line `vecr = (hati + 2hatj + 3hatk) + λ(3hati + 2hatj + hatk)`.


A line passes through the point (2, – 1, 3) and is perpendicular to the lines `vecr = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `vecr = (2hati - hatj - 3hatk) + μ(hati + 2hatj + 2hatk)` obtain its equation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×