Advertisements
Advertisements
Question
Prove that the lines through A (0, −1, −1) and B (4, 5, 1) intersects the line through C (3, 9, 4) and D (−4, 4, 4). Also, find their point of intersection.
Solution
The coordinates of any point on the line AB are given by
\[\frac{x - 0}{4 - 0} = \frac{y + 1}{5 + 1} = \frac{z + 1}{1 + 1} = \lambda\]
\[ \Rightarrow x = 4\lambda\]
\[ y = 6\lambda - 1 \]
\[ z = 2\lambda - 1\]
The coordinates of a general point on AB are
\[\left( 4\lambda, 6\lambda - 1, 2\lambda - 1 \right)\]
The coordinates of any point on the line CD are given by
\[\frac{x - 3}{3 + 4} = \frac{y - 9}{9 - 4} = \frac{z - 4}{4 - 4} = \mu\]
\[ \Rightarrow x = 7\mu + 3\]
\[ y = 5\mu + 9 \]
\[ z = 4\]
The coordinates of a general point on CD are
\[\left( 7\mu + 3, 5\mu + 9, 4 \right)\]
If the lines AB and CD intersect, then they have a common point. So, for some values of
\[\lambda \text{ and } \mu\]
we must have
\[4\lambda = 7\mu + 3, 6\lambda - 1 = 5\mu + 9, 2\lambda - 1 = 4\]
\[ \Rightarrow 4\lambda - 7\mu = 3 . . . (1)\]
\[ 6\lambda - 5\mu = 10 . . . (2) \]
\[ \lambda = \frac{5}{2} . . . (3)\]
\[\text { Solving (2) and (3), we get } \]
\[\lambda = \frac{5}{2} \]
\[\mu = 1\]
\[\text { Substituting } \lambda = \frac{5}{2} \text{ and } \mu = 1 \text{ in (1), we get } \]
\[LHS = 4\lambda - 7\mu\]
\[ = 4\left( \frac{5}{2} \right) - 7\left( 1 \right)\]
\[ = 3\]
\[ = RHS\]
\[\text{ Since } \lambda = \frac{5}{2} \text{ and } \mu = 1 \text{ satisfy (3), the given lines intersect .} \]
\[\text{ Substituting the value of } \lambda \text{ in the coordinates of a general point on the line AB, we get } \]
\[x = 10\]
\[y = 14 \]
\[z = 4\]
\[\text{ Hence, AB and CD intersect at point } \left( 10, 14, 4 \right) .\]
RELATED QUESTIONS
If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.
The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.
Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines
`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`
Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).
Find the equation of a line parallel to x-axis and passing through the origin.
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).
Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]
Show that the points whose position vectors are \[- 2 \hat{i} + 3 \hat{j} , \hat{i} + 2 \hat{j} + 3 \hat{k} \text{ and } 7 \text{ i} - \text{ k} \] are collinear.
Find the equation of a line parallel to x-axis and passing through the origin.
Find the angle between the following pair of line:
\[\frac{- x + 2}{- 2} = \frac{y - 1}{7} = \frac{z + 3}{- 3} \text{ and } \frac{x + 2}{- 1} = \frac{2y - 8}{4} = \frac{z - 5}{4}\]
Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the other one is obtained by joining the points (3, 1, 4) and (7, 2, 12).
Find the equations of the line passing through the point (2, 1, 3) and perpendicular to the lines \[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \text{ and } \frac{x}{- 3} = \frac{y}{2} = \frac{z}{5}\]
Find the equation of the line passing through the point \[\hat{i} + \hat{j} - 3 \hat{k} \] and perpendicular to the lines \[\overrightarrow{r} = \hat{i} + \lambda\left( 2 \hat{i} + \hat{j} - 3 \hat{k} \right) \text { and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{ k} \right) + \mu\left( \hat{i} + \hat{j} + \hat{k} \right) .\]
If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.
Show that the lines \[\frac{x - 1}{3} = \frac{y + 1}{2} = \frac{z - 1}{5} \text{ and } \frac{x + 2}{4} = \frac{y - 1}{3} = \frac{z + 1}{- 2}\] do not intersect.
Show that the lines \[\vec{r} = 3 \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \vec{r} = 5 \hat{i} - 2 \hat{j} + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] are intersecting. Hence, find their point of intersection.
Find the perpendicular distance of the point (1, 0, 0) from the line \[\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z + 10}{8}.\] Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.
A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D.
Find the distance of the point (2, 4, −1) from the line \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9}\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\vec{r} = 3 \hat{i} + 8 \hat{j} + 3 \hat{k} + \lambda\left( 3 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \vec{r} = - 3 \hat{i} - 7 \hat{j} + 6 \hat{k} + \mu\left( - 3 \hat{i} + 2 \hat{j} + 4 \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 8 + 3\lambda \right) \hat{i} - \left( 9 + 16\lambda \right) \hat{j} + \left( 10 + 7\lambda \right) \hat{k} \]\[\overrightarrow{r} = 15 \hat{i} + 29 \hat{j} + 5 \hat{k} + \mu\left( 3 \hat{i} + 8 \hat{j} - 5 \hat{k} \right)\]
Write the vector equation of a line passing through a point having position vector \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .
Cartesian equations of a line AB are \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\] Write the direction ratios of a line parallel to AB.
Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.
Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.
Write the formula for the shortest distance between the lines
\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\]
Write the vector equation of a line given by \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]
The equations of a line are given by \[\frac{4 - x}{3} = \frac{y + 3}{3} = \frac{z + 2}{6} .\] Write the direction cosines of a line parallel to this line.
The lines `x/1 = y/2 = z/3 and (x - 1)/-2 = (y - 2)/-4 = (z - 3)/-6` are
The direction ratios of the line perpendicular to the lines \[\frac{x - 7}{2} = \frac{y + 17}{- 3} = \frac{z - 6}{1} \text{ and }, \frac{x + 5}{1} = \frac{y + 3}{2} = \frac{z - 4}{- 2}\] are proportional to
If a line makes angles α, β and γ with the axes respectively, then cos 2 α + cos 2 β + cos 2 γ =
The equation 4x2 + 4xy + y2 = 0 represents two ______
If slopes of lines represented by kx2 - 4xy + y2 = 0 differ by 2, then k = ______
The equation of line passing through (3, -1, 2) and perpendicular to the lines `overline("r")=(hat"i"+hat"j"-hat"k")+lambda(2hat"i"-2hat"j"+hat"k")` and `overline("r")=(2hat"i"+hat"j"-3hat"k")+mu(hat"i"-2hat"j"+2hat"k")` is ______.
Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.
The lines `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` and `(x - 3)/1 = (y - k)/2 = z/1` intersect each other at point
Equation of a line passing through (1, 1, 1) and parallel to z-axis is ______.