English

Find the Cartesian and Vector Equations of a Line Which Passes Through the Point (1, 2, 3) and is Parallel to the Line − X − 2 1 = Y + 3 7 = 2 Z − 6 3 . - Mathematics

Advertisements
Advertisements

Question

Find the cartesian and vector equations of a line which passes through the point (1, 2, 3) and is parallel to the line  \[\frac{- x - 2}{1} = \frac{y + 3}{7} = \frac{2z - 6}{3} .\] 

Sum

Solution

We have \[\frac{- x - 2}{1} = \frac{y + 3}{7} = \frac{2z - 6}{3} .\] 

It can be re-written as 

\[\frac{x + 2}{- 1} = \frac{y + 3}{7} = \frac{z - 3}{\left( \frac{3}{2} \right)}\]

\[ = \frac{x + 2}{- 2} = \frac{y + 3}{14} = \frac{z - 3}{3}\]

This shows that the given line passes through the point  (-2, -3,3) and its direction ratios are proportional to  -2,14,3

Thus, the parallel vector is  \[\overrightarrow{b} = - 2 \hat{i} + 14 \hat{j} + 3 \hat{k} \]

We know that the vector equation of a line passing through a point with position vector

\[\overrightarrow{a} \]and parallel to the vector \[\overrightarrow{b} \] is  \[\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}\]

Here,

\[\overrightarrow{a} = \hat{i} + 2 \hat{j} + 3 \hat{k}  \]

\[ \overrightarrow{b} = - 2 \hat{i} + 14 \hat{j} + 3 \hat{k}\]

Vector equation of the required line is 

\[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda \left( - 2 \hat{i} + 14 \hat{j} + 3 \hat{k}  \right) . . . (1)\]

\[\text{ Here } , \lambda \text { is a parameter } . \]

Reducing (1) to cartesian form, we get 

\[x \hat{i} + y \hat{j} + z \hat{k} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k}  \right) + \lambda \left( - 2 \hat{i} + 14 \hat{j} + 3 \hat{k} \right) [\text { Putting }  \overrightarrow{r} = x \hat{i}  + y \hat{j} + z k \text{ in } (1)]\]

\[ \Rightarrow x \hat{ i }+ y \hat{j} + z \hat{k} = \left( 1 - 2\lambda \right) \hat{i} + \left( 2 + 14 \lambda \right) \hat{j} + \left( 3 + 3\lambda \right) \hat{k} \]

\[\text{ Comparing the coefficients of } \hat{i} , \hat{j} \text{ and } \hat{k} , \text{we get } \]

\[x = 1 - 2\lambda, y = 2 + 14 \lambda, z = 3 + 3\lambda\]

\[ \Rightarrow \frac{x - 1}{- 2} = \lambda, \frac{y - 2}{14} = \lambda, \frac{z - 3}{3} = \lambda\]

\[ \Rightarrow \frac{x - 1}{- 2} = \frac{y - 2}{14} = \frac{z - 3}{3} = \lambda\]

\[\text{ Hence, the cartesian form of (1) is } \]

\[\frac{x - 1}{- 2} = \frac{y - 2}{14} = \frac{z - 3}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Straight Line in Space - Exercise 28.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 28 Straight Line in Space
Exercise 28.1 | Q 16 | Page 10

RELATED QUESTIONS

Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.


A line passes through the point with position vector \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \] and is in the direction of  \[3 \hat{i} + 4 \hat{j} - 5 \hat{k} .\] Find equations of the line in vector and cartesian form. 


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]


Find the angle between the following pair of line:

\[\frac{5 - x}{- 2} = \frac{y + 3}{1} = \frac{1 - z}{3} \text{  and  } \frac{x}{3} = \frac{1 - y}{- 2} = \frac{z + 5}{- 1}\]


Find the angle between the following pair of line:

\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]


Find the angle between the pairs of lines with direction ratios proportional to  2, 2, 1 and 4, 1, 8 .

 


Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line  \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2. 


Show that the lines  \[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} \text{          and         } \frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4}\] intersect and find their point of intersection. 


Find the perpendicular distance of the point (1, 0, 0) from the line  \[\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z + 10}{8}.\] Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.


Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3). 


A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


Find the distance of the point (2, 4, −1) from the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9}\] 


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \lambda - 1 \right) \hat{i} + \left( \lambda + 1 \right) \hat{j}  - \left( 1 + \lambda \right) \hat{k}  \text{ and }  \overrightarrow{r} = \left( 1 - \mu \right) \hat{i}  + \left( 2\mu - 1 \right) \hat{j}  + \left( \mu + 2 \right) \hat{k} \]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k}  \right) + \lambda\left( 2 \hat{i}  - 5 \hat{j} + 2 \hat{k}  \right) \text{ and }, \overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \mu\left( \hat{i} - \hat{j}  + \hat{k}  \right)\]


By computing the shortest distance determine whether the following pairs of lines intersect or not  : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} - \hat{j}  \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} - \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \overrightarrow{r} = \left( 4 \hat{i} - \hat{k}  \right) + \mu\left( 2 \hat{i}  + 3 \hat{k} \right)\] 


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 5}{4} = \frac{y - 7}{- 5} = \frac{z + 3}{- 5} \text{ and } \frac{x - 8}{7} = \frac{y - 7}{1} = \frac{z - 5}{3}\]


Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and }  \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]


Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = - 4 \hat{i}  - \hat{k}  + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k}  \right)\]


Write the vector equation of a line passing through a point having position vector  \[\overrightarrow{\alpha}\] and parallel to vector \[\overrightarrow{\beta}\] .


Write the value of λ for which the lines  \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\]  are perpendicular to each other.


If the equations of a line AB are 

\[\frac{3 - x}{1} = \frac{y + 2}{- 2} = \frac{z - 5}{4},\] write the direction ratios of a line parallel to AB


If a line makes angles α, β and γ with the axes respectively, then cos 2 α + cos 2 β + cos 2 γ =


If a line makes angle \[\frac{\pi}{3} \text{ and } \frac{\pi}{4}\]  with x-axis and y-axis respectively, then the angle made by the line with z-axis is


Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.


Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.


Find the separate equations of the lines given by x2 + 2xy tan α − y2 = 0 


Find the joint equation of pair of lines through the origin which is perpendicular to the lines represented by 5x2 + 2xy - 3y2 = 0 


Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.

`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.


Find the vector equation of the lines passing through the point having position vector `(-hati - hatj + 2hatk)` and parallel to the line `vecr = (hati + 2hatj + 3hatk) + λ(3hati + 2hatj + hatk)`.


Equation of a line passing through (1, 1, 1) and parallel to z-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×