English

Find the Shortest Distance Between Following Pairs of Lines Whose Vector Are: → R =( ^ I + 2 ^ J + 3 ^ K ) + λ ( 2 ^ I + 3 ^ J + 4 ^ K ) And→ R = ( 2 ^ I + 4 ^ J + 5 ^ K ) + μ ( 3 ^ I + 4 ^ J + 5 ^ K - Mathematics

Advertisements
Advertisements

Question

Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j}  + 4 \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} + 4 \hat{j} + 5 \hat{k} \right) + \mu\left( 3 \hat{i}  + 4 \hat{j}  + 5 \hat{k} \right)\]

Sum

Solution

\[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} + 4 \hat{j}  + 5 \hat{k}  \right) + \mu\left( 3 \hat{i}  + 4 \hat{j}  + 5 \hat{k} \right)\]

Comparing the given equations with the equations , 

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \vec{b_2}\]

we get , 

\[\overrightarrow{a_1} = \hat{i} + 2 \hat{j} + 3 \hat{k} \]

\[ \overrightarrow{a_2} = 2 \hat{i} + 4 \hat{j} + 5 \hat{k}  \]

\[ \overrightarrow{b_1} = 2 \hat{i}  + 3 \hat{j}  + 4 \hat{k} \]

\[ \overrightarrow{b_2} = 3 \hat{i}  + 4 \hat{j}  + 5 \hat{k}  \]

\[ \therefore \overrightarrow{a_2} - \overrightarrow{a_1} = \hat{i} + 2 \hat{j} + 2 \hat{k} \]

\[\text{and } \overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix}\hat{i}  & \hat{j}  & \hat{k}  \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{vmatrix}\]

\[ = - \hat{i} + 2 \hat{j}  - \hat{k} \]

\[ \Rightarrow \left| \overrightarrow{b_1} \times \overrightarrow{b_2} \right| = \sqrt{\left( - 1 \right)^2 + 2^2 + \left( - 1 \right)^2}\]

\[ = \sqrt{1 + 4 + 1}\]

\[ = \sqrt{6}\]

\[\left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) . \left( \overrightarrow{b_1} \times \overrightarrow{b_2} \right) = \left( \hat{i}  + 2 \hat{j}  + 2 \hat{k} \right) . \left( - \hat{i}  + 2 \hat{j}  - \hat{k}  \right)\]

\[ = - 1 + 4 - 2\]

\[ = 1\]

The shortest distance between the lines

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and }  \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] is given by 

\[d = \left| \frac{\left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) . \left( \overrightarrow{b_1} \times \overrightarrow{b_2} \right)}{\left| \overrightarrow{b_1} \times \overrightarrow{b_2} \right|} \right|\]

\[ = \left| \frac{1}{\sqrt{6}} \right|\]

\[ = \frac{1}{\sqrt{6}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Straight Line in Space - Exercise 28.5 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 28 Straight Line in Space
Exercise 28.5 | Q 1.3 | Page 37

RELATED QUESTIONS

Show that the line through the points (4, 7, 8) (2, 3, 4) is parallel to the line through the points (−1, −2, 1), (1, 2, 5).


ABCD is a parallelogram. The position vectors of the points AB and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k}  \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\]  Find the vector equation of the line BD. Also, reduce it to cartesian form.


The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]  Find a vector equation for the line.


Find the points on the line \[\frac{x + 2}{3} = \frac{y + 1}{2} = \frac{z - 3}{2}\]  at a distance of 5 units from the point P (1, 3, 3).


The cartesian equation of a line are 3x + 1 = 6y − 2 = 1 − z. Find the fixed point through which it passes, its direction ratios and also its vector equation.


Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.


Show that the three lines with direction cosines \[\frac{12}{13}, \frac{- 3}{13}, \frac{- 4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{- 4}{13}, \frac{12}{13}\] are mutually perpendicular. 


Show that the line through the points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and, (1, 2, 5).


Find the angle between the following pair of line:

\[\frac{5 - x}{- 2} = \frac{y + 3}{1} = \frac{1 - z}{3} \text{  and  } \frac{x}{3} = \frac{1 - y}{- 2} = \frac{z + 5}{- 1}\]


Find the angle between the following pair of line:

\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{  and  } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]


Find the angle between the following pair of line:

\[\frac{- x + 2}{- 2} = \frac{y - 1}{7} = \frac{z + 3}{- 3} \text{  and  } \frac{x + 2}{- 1} = \frac{2y - 8}{4} = \frac{z - 5}{4}\]


Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\] 


Find the equations of the line passing through the point (2, 1, 3) and perpendicular to the lines  \[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \text{  and  } \frac{x}{- 3} = \frac{y}{2} = \frac{z}{5}\]


If the coordinates of the points ABCD be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD


Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{           and                  } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\]   intersect. Find their point of intersection.


A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D


Find the equation of the perpendicular drawn from the point P (2, 4, −1) to the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9} .\]  Also, write down the coordinates of the foot of the perpendicular from P


Find the length of the perpendicular drawn from the point (5, 4, −1) to the line \[\overrightarrow{r} = \hat{i}  + \lambda\left( 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \right) .\]


Find the equation of the perpendicular drawn from the point P (−1, 3, 2) to the line  \[\overrightarrow{r} = \left( 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + \hat{j} + 3 \hat{k}  \right) .\]  Also, find the coordinates of the foot of the perpendicular from P.


Find the foot of the perpendicular from (0, 2, 7) on the line \[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2} .\]


Find the distance of the point (2, 4, −1) from the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9}\] 


Find the shortest distance between the following pairs of lines whose vector equations are: \[\vec{r} = 3 \hat{i} + 8 \hat{j} + 3 \hat{k}  + \lambda\left( 3 \hat{i}  - \hat{j}  + \hat{k}  \right) \text{ and }  \vec{r} = - 3 \hat{i}  - 7 \hat{j}  + 6 \hat{k}  + \mu\left( - 3 \hat{i}  + 2 \hat{j}  + 4 \hat{k} \right)\]


By computing the shortest distance determine whether the following pairs of lines intersect or not  : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} - \hat{j}  \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = - 4 \hat{i}  - \hat{k}  + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k}  \right)\]


Write the cartesian and vector equations of Y-axis.

 

Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.

 

Write the angle between the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z - 2}{1} \text{ and } \frac{x - 1}{1} = \frac{y}{2} = \frac{z - 1}{3} .\]


Write the formula for the shortest distance between the lines 

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and }  \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\] 

 


If the equations of a line AB are 

\[\frac{3 - x}{1} = \frac{y + 2}{- 2} = \frac{z - 5}{4},\] write the direction ratios of a line parallel to AB


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


The angle between the lines

\[\frac{x - 1}{1} = \frac{y - 1}{1} = \frac{z - 1}{2} \text{ and }, \frac{x - 1}{- \sqrt{3} - 1} = \frac{y - 1}{\sqrt{3} - 1} = \frac{z - 1}{4}\] is 

Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].

 

If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k. 


If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then


Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×