हिंदी

Find the Shortest Distance Between the Following Pairs of Lines Whose Vector : → R = 3 ^ I + 8 ^ J + 3 ^ K + λ ( 3 ^ I − ^ J + ^ K ) and → R = − 3 ^ I − 7 ^ J + 6 ^ K + μ ( − 3 ^ I + 2 ^ J + 4 ^ K ) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the shortest distance between the following pairs of lines whose vector equations are: \[\vec{r} = 3 \hat{i} + 8 \hat{j} + 3 \hat{k}  + \lambda\left( 3 \hat{i}  - \hat{j}  + \hat{k}  \right) \text{ and }  \vec{r} = - 3 \hat{i}  - 7 \hat{j}  + 6 \hat{k}  + \mu\left( - 3 \hat{i}  + 2 \hat{j}  + 4 \hat{k} \right)\]

योग

उत्तर

\[\vec{r} = 3 \hat{i}  + 8 \hat{j} + 3 \hat{k} + \lambda\left( 3 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \vec{r} = - 3 \hat{i} - 7 \hat{j} + 6 \hat{k} + \mu\left( - 3 \hat{i} + 2 \hat{j} + 4 \hat{k} \right)\]  Comparing the given equations with the equations

\[\vec{r} = \vec{a_1} + \lambda \vec{b_1} \text{ and }  \vec{r} = \vec{a_2} + \mu \vec{b_2}\]

\[\vec{a_1} = 3 \hat{i} + 8 \hat{j} + 3 \hat{k} \]

\[ \vec{a_2} = - 3 \hat{i} - 7 \hat{j} + 6 \hat{k} \]

\[ \vec{b_1} = 3 \hat{i} - \hat{j} + \hat{k}  \]

\[ \vec{b_2} = - 3 \hat{i}  + 2 \hat{j}  + 4 \hat{k}  \]

\[ \therefore \vec{a_2} - \vec{a_1} = - 6 \hat{i}  - 15 \hat{j}  + 3 \hat{k} \]

\[and \vec{b_1} \times \vec{b_2} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 3 & - 1 & 1 \\ - 3 & 2 & 4\end{vmatrix}\]

\[ = - 6 \hat{i} - 15 \hat{j} + 3 \hat{k} \]

\[ \Rightarrow \left| \vec{b_1} \times \vec{b_2} \right| = \sqrt{\left( - 6 \right)^2 + \left( - 15 \right)^2 + 3^2}\]

\[ = \sqrt{36 + 225 + 9}\]

\[ = \sqrt{270}\]

\[\left( \vec{a_2} - \vec{a_1} \right) . \left( \vec{b_1} \times \vec{b_2} \right) = \left( - 6 \hat{i} - 15 \hat{j} + 3 \hat{k} \right) . \left( - 6 \hat{i} - 15 \hat{j} + 3 \hat{k} \right)\]

\[ = 36 + 225 + 9\]

\[ = 270\]

The shortest distance between the lines

\[\vec{r} = \vec{a_1} + \lambda \vec{b_1} \text{ and } \vec{r} = \vec{a_2} + \mu \vec{b_2}\] is given by

\[d = \left| \frac{\left( \vec{a_2} - \vec{a_1} \right) . \left( \vec{b_1} \times \vec{b_2} \right)}{\left| \vec{b_1} \times \vec{b_2} \right|} \right|\]

\[ = \frac{270}{\sqrt{270}}\]

\[ = \sqrt{270}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Straight Line in Space - Exercise 28.5 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 28 Straight Line in Space
Exercise 28.5 | Q 1.1 | पृष्ठ ३७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.


The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.

 


Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.


Find the points on the line \[\frac{x + 2}{3} = \frac{y + 1}{2} = \frac{z - 3}{2}\]  at a distance of 5 units from the point P (1, 3, 3).


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text { and }\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\]  are perpendicular to each other. 


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1). 


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]

 


Find the angle between the following pair of line:

\[\frac{5 - x}{- 2} = \frac{y + 3}{1} = \frac{1 - z}{3} \text{  and  } \frac{x}{3} = \frac{1 - y}{- 2} = \frac{z + 5}{- 1}\]


Find the angle between the following pair of line:

\[\frac{- x + 2}{- 2} = \frac{y - 1}{7} = \frac{z + 3}{- 3} \text{  and  } \frac{x + 2}{- 1} = \frac{2y - 8}{4} = \frac{z - 5}{4}\]


Find the angle between the pairs of lines with direction ratios proportional to   abc and b − cc − aa − b.


Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the  other one is obtained by joining the points (3, 1, 4) and (7, 2, 12). 


Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line  \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\] 


Determine whether the following pair of lines intersect or not:  

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]


Find the perpendicular distance of the point (1, 0, 0) from the line  \[\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z + 10}{8}.\] Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.


Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3). 


Find the equation of the perpendicular drawn from the point P (2, 4, −1) to the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9} .\]  Also, write down the coordinates of the foot of the perpendicular from P


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


Find the distance of the point (2, 4, −1) from the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9}\] 


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 2 \hat{i} - \hat{j} - \hat{k}  \right) + \lambda\left( 2 \hat{i}  - 5 \hat{j} + 2 \hat{k}  \right) \text{ and }, \overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \mu\left( \hat{i} - \hat{j}  + \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{3} = \frac{y - 2}{1}; z = 2\]


Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{- 1} = \frac{y + 2}{1} = \frac{z - 3}{- 2} \text{ and } \frac{x - 1}{1} = \frac{y + 1}{2} = \frac{z + 1}{- 2}\]


Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]


Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines

 (1, 3, 0) and (0, 3, 0)


Find the distance between the lines l1 and l2 given by  \[\overrightarrow{r} = \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( 2 \hat{i}  + 3 \hat{j}  + 6 \hat{k}  \right) \text{ and } , \overrightarrow{r} = 3 \hat{i} + 3 \hat{j}  - 5 \hat{k}  + \mu\left( 2 \hat{i} + 3 \hat{j}  + 6 \hat{k}  \right)\]

 

 


Write the value of λ for which the lines  \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\]  are perpendicular to each other.


The equations of a line are given by \[\frac{4 - x}{3} = \frac{y + 3}{3} = \frac{z + 2}{6} .\]  Write the direction cosines of a line parallel to this line.


The direction ratios of the line x − y + z − 5 = 0 = x − 3y − 6 are proportional to

 

 


If a line makes angle \[\frac{\pi}{3} \text{ and } \frac{\pi}{4}\]  with x-axis and y-axis respectively, then the angle made by the line with z-axis is


Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.


Find the value of p for which the following lines are perpendicular : 

`(1-x)/3 = (2y-14)/(2p) = (z-3)/2 ; (1-x)/(3p) = (y-5)/1 = (6-z)/5`


If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then


The separate equations of the lines represented by `3x^2 - 2sqrt(3)xy - 3y^2` = 0 are ______ 


P is a point on the line joining the points A(0, 5, −2) and B(3, −1, 2). If the x-coordinate of P is 6, then its z-coordinate is ______.


A line passes through the point (2, – 1, 3) and is perpendicular to the lines `vecr = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `vecr = (2hati - hatj - 3hatk) + μ(hati + 2hatj + 2hatk)` obtain its equation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×