हिंदी

Determine Whether the Following Pair of Lines Intersect Or Not: X − 1 2 = Y + 1 3 = Z and X + 1 5 = Y − 2 1 ; Z = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\] 

योग

उत्तर

\[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]  

The coordinates of any point on the first line are given by 

\[\frac{x - 1}{2} = \frac{y + 1}{3} = z = \lambda\]

\[ \Rightarrow x = 2\lambda + 1\]

\[ y = 3\lambda - 1 \]

\[ z = \lambda\]

The coordinates of a general point on the first line are  \[\left( 2\lambda + 1, 3\lambda - 1, \lambda \right)\] 

Also, the coordinates of any point on the second line are given by

\[\frac{x + 1}{5} = \frac{y - 2}{1} = \mu, z = 2\]

\[ \Rightarrow x = 5\mu - 1\]

\[ y = \mu + 2 \]

\[ z = 2\]

The coordinates of a general point on the second line are \[\left( 5\mu - 1, \mu + 2, 2 \right)\] 

If the lines intersect, then they have a common point. So, for some values of

\[\lambda \text{ and } \mu\] ,

we must have ,

\[2\lambda + 1 = 5\mu - 1, 3\lambda - 1 = \mu + 2, \lambda = 2\]

\[ \Rightarrow 2\lambda - 5\mu = - 2 . . . (1)\]

\[ 3\lambda - \mu = 3 . . . (2)\]

\[ \lambda = 2 . . . (3)\]

\[\text{ Solving (2) and (3), we get } \]

\[\lambda = 2 \]

\[\mu = 3\]

\[\text{ Substituting }  \lambda = 2 \text{ and } \mu = 3 \text{ in} \left( 1 \right), \text{ we get } \]

\[LHS = 2\lambda - 5\mu\]

\[ = 2\left( 2 \right) - 5\left( 3 \right)\]

\[ = 4 - 15\]

\[ = - 11 \neq - 2\]

\[ \Rightarrow LHS \neq RHS\]

\[\text{ Since} \lambda = 2 \text{ and } \mu = 3 \text{ do not satisfy (1), the given lines do not intersect } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Straight Line in Space - Exercise 28.3 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 28 Straight Line in Space
Exercise 28.3 | Q 6.2 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.


Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and is parallel to the line `(x+3)/3=(4-y)/5=(z+8)/6`


Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.


Find the equation of the line in vector and in Cartesian form that passes through the point with position vector `2hati -hatj+4hatk`  and is in the direction `hati + 2hatj - hatk`.


Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).


Find the vector and the Cartesian equations of the line that passes through the points (3, −2, −5), (3, −2, 6).

 


Show that the lines `(x-5)/7 = (y + 2)/(-5) = z/1` and `x/1 = y/2 = z/3` are perpendicular to each other.


Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`


ABCD is a parallelogram. The position vectors of the points AB and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k}  \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\]  Find the vector equation of the line BD. Also, reduce it to cartesian form.


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Show that the three lines with direction cosines \[\frac{12}{13}, \frac{- 3}{13}, \frac{- 4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{- 4}{13}, \frac{12}{13}\] are mutually perpendicular. 


Find the angle between the following pair of line:

\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{- 3} \text { and } \frac{x + 3}{- 1} = \frac{y - 5}{8} = \frac{z - 1}{4}\]


Find the angle between the following pair of line:

\[\frac{5 - x}{- 2} = \frac{y + 3}{1} = \frac{1 - z}{3} \text{  and  } \frac{x}{3} = \frac{1 - y}{- 2} = \frac{z + 5}{- 1}\]


Find the angle between the following pair of line:

\[\frac{x - 2}{3} = \frac{y + 3}{- 2}, z = 5 \text{ and } \frac{x + 1}{1} = \frac{2y - 3}{3} = \frac{z - 5}{2}\]


If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{2 \lambda} = \frac{z - 3}{2} \text{     and     } \frac{x - 1}{3\lambda} = \frac{y - 1}{1} = \frac{z - 6}{- 5}\]  are perpendicular, find the value of λ.


Find the value of λ so that the following lines are perpendicular to each other. \[\frac{x - 5}{5\lambda + 2} = \frac{2 - y}{5} = \frac{1 - z}{- 1}, \frac{x}{1} = \frac{2y + 1}{4\lambda} = \frac{1 - z}{- 3}\]


Show that the lines \[\frac{x - 1}{3} = \frac{y + 1}{2} = \frac{z - 1}{5} \text{           and                } \frac{x + 2}{4} = \frac{y - 1}{3} = \frac{z + 1}{- 2}\]  do not intersect. 


Prove that the lines through A (0, −1, −1) and B (4, 5, 1) intersects the line through C (3, 9, 4) and D (−4, 4, 4). Also, find their point of intersection. 


Show that the lines \[\vec{r} = 3 \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \vec{r} = 5 \hat{i} - 2 \hat{j}  + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] are intersecting. Hence, find their point of intersection.


Find the perpendicular distance of the point (3, −1, 11) from the line \[\frac{x}{2} = \frac{y - 2}{- 3} = \frac{z - 3}{4} .\]


Find the foot of perpendicular from the point (2, 3, 4) to the line \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\] Also, find the perpendicular distance from the given point to the line.


Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\] 


Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and }  \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]


Write the angle between the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z - 2}{1} \text{ and } \frac{x - 1}{1} = \frac{y}{2} = \frac{z - 1}{3} .\]


The equations of a line are given by \[\frac{4 - x}{3} = \frac{y + 3}{3} = \frac{z + 2}{6} .\]  Write the direction cosines of a line parallel to this line.


Find the Cartesian equations of the line which passes through the point (−2, 4 , −5) and is parallel to the line \[\frac{x + 3}{3} = \frac{4 - y}{5} = \frac{z + 8}{6} .\]


The direction ratios of the line perpendicular to the lines \[\frac{x - 7}{2} = \frac{y + 17}{- 3} = \frac{z - 6}{1} \text{ and }, \frac{x + 5}{1} = \frac{y + 3}{2} = \frac{z - 4}{- 2}\] are proportional to


If the direction ratios of a line are proportional to 1, −3, 2, then its direction cosines are

 


Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`


If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then


Choose correct alternatives:

The difference between the slopes of the lines represented by 3x2 - 4xy + y2 = 0 is 2


Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______ 


Find the separate equations of the lines given by x2 + 2xy tan α − y2 = 0 


The distance of the point (4, 3, 8) from the Y-axis is ______.


Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.

`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×