हिंदी

Find the Angle Between the Pairs of Lines with Direction Ratios Proportional To A, B, C And B − C, C − A, A − B. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the pairs of lines with direction ratios proportional to   abc and b − cc − aa − b.

योग

उत्तर

abc and b − cc − aa − b

\[\text{ Let } \overrightarrow{m_1} \text{   and    } \overrightarrow{m_2} \text{ be vectors parallel to the given two lines } . \]

\[\text{ Then, the angle between the two lines is same as the angle between } \overrightarrow{m_1} \text{ and } \overrightarrow{m_2} . \]

\[\text{ Now } , \]

\[ \overrightarrow{m_1} = \text{ Vector parallel to the line having direction ratios proportional to a, b, c} \]

\[ \overrightarrow{m_2} = \text{ Vector parallel to the line having direction ratios proportional to b - c, c - a, a - b} \]

\[ \therefore \overrightarrow{m_1} = a \hat{i} + b \hat{j} + c \hat{k}  \text{ and } \overrightarrow{m_2} = \left( b - c \right)  \hat{ i }+ \left( c - a \right) \hat{j} + \left( a - b \right) \hat{k}  \]

\[\text{ Let }  \theta \text{ be the angle between the lines } . \]

\[Now, \]

\[\cos \theta = \frac{\overrightarrow{m_1} . \overrightarrow{m_2}}{\left| \overrightarrow{m_1} \right| \left| \overrightarrow{m_2} \right|}\]

\[ = \frac{\left( a \hat{i}  + b \hat{j} + c \hat{k} \right) . \left\{ \left( b - c \right) \hat{i} + \left( c - a \right) \hat{j} + \left( a - b \right) \hat{k} \right\}}{\sqrt{a^2 + b^2 + c^2} \sqrt{\left( b - c \right)^2 + \left( c - a \right)^2 + \left( a - b \right)^2}}\]

\[ = \frac{ab - ac + bc - ba + ca - cb}{\sqrt{a^2 + b^2 + c^2} \sqrt{\left( b - c \right)^2 + \left( c - a \right)^2 + \left( a - b \right)^2}}\]

\[ = 0\]

\[ \Rightarrow \theta = \frac{\pi}{2}\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Straight Line in Space - Exercise 28.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 28 Straight Line in Space
Exercise 28.2 | Q 10.4 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.


Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.


The Cartesian equation of a line is `(x-5)/3 = (y+4)/7 = (z-6)/2` Write its vector form.


Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`


ABCD is a parallelogram. The position vectors of the points AB and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k}  \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\]  Find the vector equation of the line BD. Also, reduce it to cartesian form.


The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]  Find a vector equation for the line.


Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are  \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\]  Also, reduce the equation obtained in vector form.


Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the through the points (0, 3, 2) and (3, 5, 6).


Find the angle between the following pair of line:

\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{- 3} \text { and } \frac{x + 3}{- 1} = \frac{y - 5}{8} = \frac{z - 1}{4}\]


Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the  other one is obtained by joining the points (3, 1, 4) and (7, 2, 12). 


Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\] 


Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line  \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]


Find the equation of the line passing through the point  \[\hat{i}  + \hat{j}  - 3 \hat{k} \] and perpendicular to the lines  \[\overrightarrow{r} = \hat{i}  + \lambda\left( 2 \hat{i} + \hat{j}  - 3 \hat{k}  \right) \text { and }  \overrightarrow{r} = \left( 2 \hat{i}  + \hat{j}  - \hat{ k}  \right) + \mu\left( \hat{i}  + \hat{j}  + \hat{k}  \right) .\]

  

 

 

 


Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{           and                  } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\]   intersect. Find their point of intersection.


Determine whether the following pair of lines intersect or not:  

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]


Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3). 


A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j}  + 4 \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} + 4 \hat{j} + 5 \hat{k} \right) + \mu\left( 3 \hat{i}  + 4 \hat{j}  + 5 \hat{k} \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are:  \[\frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} \text{ and } \frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1}\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} - \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \overrightarrow{r} = \left( 4 \hat{i} - \hat{k}  \right) + \mu\left( 2 \hat{i}  + 3 \hat{k} \right)\] 


Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = \hat{i} + 2 \hat{j} + 3 \hat{k} + \lambda\left( \hat{i} - 3 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = 4 \hat{i} + 5 \hat{j}  + 6 \hat{k} + \mu\left( 2 \hat{i} + 3 \hat{j} + \hat{k} \right)\]


Write the cartesian and vector equations of Y-axis.

 

Write the coordinate axis to which the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 1}{0}\]  is  perpendicular.


Write the formula for the shortest distance between the lines 

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and }  \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\] 

 


Write the condition for the lines  \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and  } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.


The lines  \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3} \text { and } \frac{x - 1}{- 2} = \frac{y - 2}{- 4} = \frac{z - 3}{- 6}\] 

 


Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`


If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k. 


If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then


The equation 4x2 + 4xy + y2 = 0 represents two ______ 


Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______ 


Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.

`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


A line passes through the point (2, – 1, 3) and is perpendicular to the lines `vecr = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `vecr = (2hati - hatj - 3hatk) + μ(hati + 2hatj + 2hatk)` obtain its equation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×