हिंदी

Find the Angle Between the Lines → R = ( 2 ^ I − 5 ^ J + ^ K ) + λ ( 3 ^ I + 2 ^ J + 6 ^ K ) and → R = 7 ^ I − 6 ^ K + μ ( ^ I + 2 ^ J + 2 ^ K ) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the lines 

\[\vec{r} = \left( 2 \hat{i}  - 5 \hat{j}  + \hat{k}  \right) + \lambda\left( 3 \hat{i}  + 2 \hat{j}  + 6 \hat{k}  \right)\] and \[\vec{r} = 7 \hat{i} - 6 \hat{k}  + \mu\left( \hat{i}  + 2 \hat{j}  + 2 \hat{k}  \right)\] 

टिप्पणी लिखिए

उत्तर

Let 

θ  be the angle between the given lines. The given lines are parallel to the vectors \[\overrightarrow{b_1} = 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \] and 

\[\overrightarrow{b_2} = \hat{i} + 2 \hat{j} + 2 \hat{k}\]  respectively. 

So, the angle θ  between the given lines is given by 

\[\cos\theta = \frac{\overrightarrow{b_1} . \overrightarrow{b_2}}{\left| \overrightarrow{b_1} \right|\left| \overrightarrow{b_2} \right|}\]

\[ = \frac{\left( 3 \hat{i}  + 2 \hat{j}  + 6 \hat{k} \right) . \left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right)}{\sqrt{3^2 + 2^2 + 6^2}\sqrt{1^2 + 2^2 + 2^2}}\]

\[ = \frac{3 \times 1 + 2 \times 2 + 6 \times 2}{\sqrt{49}\sqrt{9}}\]

\[ = \frac{19}{21}\]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{19}{21} \right)\] 

Thus, the angle between the given lines is

\[\cos^{- 1} \left( \frac{19}{21} \right)\]

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Straight Line in Space - Very Short Answers [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 28 Straight Line in Space
Very Short Answers | Q 20 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.


If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.


Show that the line through the points (4, 7, 8) (2, 3, 4) is parallel to the line through the points (−1, −2, 1), (1, 2, 5).


Show that the lines `(x-5)/7 = (y + 2)/(-5) = z/1` and `x/1 = y/2 = z/3` are perpendicular to each other.


Find the vector equation of a line which is parallel to the vector \[2 \hat{i} - \hat{j} + 3 \hat{k}\]  and which passes through the point (5, −2, 4). Also, reduce it to cartesian form.


Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text { and }\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\]  are perpendicular to each other. 


Find the equation of a line parallel to x-axis and passing through the origin.


Find the angle between the following pair of line:

\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} \text  { and }  \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]


Find the equation of the line passing through the point (1, −1, 1) and perpendicular to the lines joining the points (4, 3, 2), (1, −1, 0) and (1, 2, −1), (2, 1, 1).


Find the value of λ so that the following lines are perpendicular to each other. \[\frac{x - 5}{5\lambda + 2} = \frac{2 - y}{5} = \frac{1 - z}{- 1}, \frac{x}{1} = \frac{2y + 1}{4\lambda} = \frac{1 - z}{- 3}\]


Find the direction cosines of the line 

\[\frac{x + 2}{2} = \frac{2y - 7}{6} = \frac{5 - z}{6}\]  Also, find the vector equation of the line through the point A(−1, 2, 3) and parallel to the given line.  


Show that the lines \[\frac{x - 1}{3} = \frac{y + 1}{2} = \frac{z - 1}{5} \text{           and                } \frac{x + 2}{4} = \frac{y - 1}{3} = \frac{z + 1}{- 2}\]  do not intersect. 


Determine whether the following pair of lines intersect or not:  

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \lambda - 1 \right) \hat{i} + \left( \lambda + 1 \right) \hat{j}  - \left( 1 + \lambda \right) \hat{k}  \text{ and }  \overrightarrow{r} = \left( 1 - \mu \right) \hat{i}  + \left( 2\mu - 1 \right) \hat{j}  + \left( \mu + 2 \right) \hat{k} \]


Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{3} = \frac{y - 2}{1}; z = 2\]


Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{- 1} = \frac{y + 2}{1} = \frac{z - 3}{- 2} \text{ and } \frac{x - 1}{1} = \frac{y + 1}{2} = \frac{z + 1}{- 2}\]


By computing the shortest distance determine whether the following pairs of lines intersect or not  : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} - \hat{j}  \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


Write the vector equations of the following lines and hence determine the distance between them  \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z + 4}{6} \text{ and } \frac{x - 3}{4} = \frac{y - 3}{6} = \frac{z + 5}{12}\]


Find the shortest distance between the lines \[\overrightarrow{r} = \hat{i} + 2 \hat{j} + 3 \hat{k} + \lambda\left( \hat{i} - 3 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = 4 \hat{i} + 5 \hat{j}  + 6 \hat{k} + \mu\left( 2 \hat{i} + 3 \hat{j} + \hat{k} \right)\]


Write the coordinate axis to which the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 1}{0}\]  is  perpendicular.


Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

Write the vector equation of a line given by \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]

 


If a line makes angle \[\frac{\pi}{3} \text{ and } \frac{\pi}{4}\]  with x-axis and y-axis respectively, then the angle made by the line with z-axis is


The shortest distance between the lines  \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\] 

 

 

 

 


Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.


Find the value of p for which the following lines are perpendicular : 

`(1-x)/3 = (2y-14)/(2p) = (z-3)/2 ; (1-x)/(3p) = (y-5)/1 = (6-z)/5`


The separate equations of the lines represented by `3x^2 - 2sqrt(3)xy - 3y^2` = 0 are ______ 


The equation 4x2 + 4xy + y2 = 0 represents two ______ 


Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______ 


Find the joint equation of pair of lines through the origin which is perpendicular to the lines represented by 5x2 + 2xy - 3y2 = 0 


If slopes of lines represented by kx2 - 4xy + y2 = 0 differ by 2, then k = ______ 


The distance of the point (4, 3, 8) from the Y-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×