हिंदी

By Computing the Shortest Distance Determine Whether the Following Pairs of Lines Intersect Or Not: X − 5 4 = Y − 7 − 5 = Z + 3 − 5 a N D X − 8 7 = Y − 7 1 = Z − 5 3 - Mathematics

Advertisements
Advertisements

प्रश्न

By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 5}{4} = \frac{y - 7}{- 5} = \frac{z + 3}{- 5} \text{ and } \frac{x - 8}{7} = \frac{y - 7}{1} = \frac{z - 5}{3}\]

योग

उत्तर

\[\frac{x - 5}{4} = \frac{y - 7}{- 5} = \frac{z + 3}{- 5} \text{ and } \frac{x - 8}{7} = \frac{y - 7}{1} = \frac{z - 5}{3}\]  Since the first line passes through the point (5, 7,-3)  and has direction ratios proportional to 4, -5,-5  its vector equation is 

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} . . . (1) \]

\[\text{ Here } , \]

\[ \overrightarrow{a_1} = 5 \hat{i}  + 7 \hat{j} - 3 \hat{k} \]

\[ \overrightarrow{b_1} = 4 \hat{i} - 5 \hat{j} - 5 \hat{k}\] 

Also, the second line passes through the point (8, 7, 5) and has direction ratios proportional to 7, 1, 3.
Its vector equation is

\[\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2} . . . (2) \]

\[\text{ Here } , \]

\[ \overrightarrow{a_2} = 8 \hat{i} + 7 \hat{j} + 5 \hat{k} \]

\[ \overrightarrow{b_2} = 7 \hat{i} + \hat{j} + 3 \hat{k} \]

Now,

\[\overrightarrow{a_2} - \vec{a_1} = 3 \hat{i} + 8 \hat{k} \]

\[\text{ and  } \overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 4 & - 5 & - 5 \\ 7 & 1 & 3\end{vmatrix}\]

\[ = - 10 \hat{i} - 47 \hat{j} + 39 \hat{k} \]

\[\left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) . \left( \overrightarrow{b_1} \times \overrightarrow{b_2} \right) = \left( 3 \hat{i} + 8 \hat{k} \right) . \left( - 10 \hat{i} - 47 \hat{j} + 39 \hat{k} \right)\]

\[ = - 30 + 312\]

\[ = 282\]

\[\text{ We observe }\]

\[\left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) . \left( \overrightarrow{b_1} \times \overrightarrow{b_2} \right) \neq 0\]

\[\text{ Thus, the given lines do not intersect } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Straight Line in Space - Exercise 28.5 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 28 Straight Line in Space
Exercise 28.5 | Q 3.4 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.


Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and is parallel to the line `(x+3)/3=(4-y)/5=(z+8)/6`


Find the vector and Cartesian equations of the line through the point (1, 2, −4) and perpendicular to the two lines. 

`vecr=(8hati-19hatj+10hatk)+lambda(3hati-16hatj+7hatk) " and "vecr=(15hati+29hatj+5hatk)+mu(3hati+8hatj-5hatk)`

 

 


If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


Show that the lines `(x-5)/7 = (y + 2)/(-5) = z/1` and `x/1 = y/2 = z/3` are perpendicular to each other.


Find the vector equation of the line passing through the points (−1, 0, 2) and (3, 4, 6).


The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]  Find a vector equation for the line.


Show that the points whose position vectors are  \[- 2 \hat{i} + 3 \hat{j} , \hat{i} + 2 \hat{j} + 3 \hat{k}  \text{ and }  7 \text{ i}  - \text{ k} \]  are collinear.


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text { and }\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\]  are perpendicular to each other. 


Find the angle between the following pair of line:

\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} \text  { and }  \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]


Find the angle between the following pair of line:

\[\frac{5 - x}{- 2} = \frac{y + 3}{1} = \frac{1 - z}{3} \text{  and  } \frac{x}{3} = \frac{1 - y}{- 2} = \frac{z + 5}{- 1}\]


Find the angle between the pairs of lines with direction ratios proportional to 5, −12, 13 and −3, 4, 5


Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\] 


Find the equation of the line passing through the point (2, −1, 3) and parallel to the line  \[\overrightarrow{r} = \left( \hat{i} - 2 \hat{j} + \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} - 5 \hat{k} \right) .\]


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Find the direction cosines of the line 

\[\frac{x + 2}{2} = \frac{2y - 7}{6} = \frac{5 - z}{6}\]  Also, find the vector equation of the line through the point A(−1, 2, 3) and parallel to the given line.  


Determine whether the following pair of lines intersect or not:  

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]


Find the equation of the perpendicular drawn from the point P (2, 4, −1) to the line  \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9} .\]  Also, write down the coordinates of the foot of the perpendicular from P


Find the length of the perpendicular drawn from the point (5, 4, −1) to the line \[\overrightarrow{r} = \hat{i}  + \lambda\left( 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \right) .\]


Find the equation of the perpendicular drawn from the point P (−1, 3, 2) to the line  \[\overrightarrow{r} = \left( 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + \hat{j} + 3 \hat{k}  \right) .\]  Also, find the coordinates of the foot of the perpendicular from P.


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} - \hat{j} - \hat{k} + \mu\left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and }  \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]


Write the cartesian and vector equations of X-axis.

 

Write the cartesian and vector equations of Z-axis.

 

Write the coordinate axis to which the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 1}{0}\]  is  perpendicular.


Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.

 

Write the formula for the shortest distance between the lines 

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b} \text{ and }  \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b} .\] 

 


The equations of a line are given by \[\frac{4 - x}{3} = \frac{y + 3}{3} = \frac{z + 2}{6} .\]  Write the direction cosines of a line parallel to this line.


Find the angle between the lines 

\[\vec{r} = \left( 2 \hat{i}  - 5 \hat{j}  + \hat{k}  \right) + \lambda\left( 3 \hat{i}  + 2 \hat{j}  + 6 \hat{k}  \right)\] and \[\vec{r} = 7 \hat{i} - 6 \hat{k}  + \mu\left( \hat{i}  + 2 \hat{j}  + 2 \hat{k}  \right)\] 


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


The angle between the lines

\[\frac{x - 1}{1} = \frac{y - 1}{1} = \frac{z - 1}{2} \text{ and }, \frac{x - 1}{- \sqrt{3} - 1} = \frac{y - 1}{\sqrt{3} - 1} = \frac{z - 1}{4}\] is 

If the direction ratios of a line are proportional to 1, −3, 2, then its direction cosines are

 


The straight line \[\frac{x - 3}{3} = \frac{y - 2}{1} = \frac{z - 1}{0}\] is


If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k. 


If 2x + y = 0 is one of the line represented by 3x2 + kxy + 2y2 = 0 then k = ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×