मराठी

Write the Vector Equations of the Following Lines and Hence Determine the Distance Between Them X − 1 2 = Y − 2 3 = Z + 4 6 a N D X − 3 4 = Y − 3 6 = Z + 5 12 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the vector equations of the following lines and hence determine the distance between them  \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z + 4}{6} \text{ and } \frac{x - 3}{4} = \frac{y - 3}{6} = \frac{z + 5}{12}\]

बेरीज

उत्तर

We have 

\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z + 4}{6}\]

\[\frac{x - 3}{4} = \frac{y - 3}{6} = \frac{z + 5}{12}\]

Since the first line passes through the point (1, 2, -4) and has direction ratios proportional to 2, 3, 6, its vector equation is

\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} . . . (1) \]

\[ \Rightarrow \overrightarrow{r} = \hat{i}  + 2 \hat{j}  - 4 \hat{k}  + \lambda\left( 2 \hat{i}  + 3 \hat{j}  + 6 \hat{k}  \right)\]

Also, the second line passes through the point (3, 3, -5) and has direction ratios proportional to 4, 6, 12.
Its vector equation is

\[\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2} . . . (2) \]

\[ \Rightarrow \overrightarrow{r} = 3 \hat{i}  + 3 \hat{j} - 5 \hat{k} + \mu\left( 4 \hat{i} + 6 \hat{j} + 12 \hat{k} \right)\]

\[ \Rightarrow \overrightarrow{r} = 3 \hat{i} + 3 \hat{j} - 5 \hat{k} + 2\mu\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k}  \right)\]

These two lines pass through the points having position vectors \[\overrightarrow{a_1} = \hat{i} + 2 \hat{j} - 4 \hat{k} \text{ and  }\overrightarrow{a_2} = 3 \hat{i} + 3 \hat{j} - 5 \hat{k} \]  and are parallel to the vector

\[\overrightarrow{b} = 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \]

Now,

\[\overrightarrow{a_2} - \overrightarrow{a_1} = 2 \hat{i} + \hat{j} - \hat{k}\]

and 

\[\left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) \times \overrightarrow{b} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) \times \left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right)\]

\[ = \begin{vmatrix}\hat{i}  & \hat{j}  & \hat{k} \\ 2 & 1 & - 1 \\ 2 & 3 & 6\end{vmatrix}\]

\[ = 9 \hat{i} - 14 \hat{j} + 4 \hat{k}  \]

\[ \Rightarrow \left| \left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) \times \overrightarrow{b} \right| = \sqrt{9^2 + \left( - 14 \right)^2 + 4^2}\]

\[ = \sqrt{81 + 196 + 16}\]

\[ = \sqrt{293}\]

\[\text{ and }\left| \overrightarrow{b} \right| = \sqrt{2^2 + 3^2 + 6^2}\]

\[ = \sqrt{4 + 9 + 36}\]

\[ = 7\]

The shortest distance between the two lines is given by 

\[\frac{\left| \left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) \times \overrightarrow{b} \right|}{\left| \overrightarrow{b} \right|} = \frac{\sqrt{293}}{7} \text{ units } \]

 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Straight Line in Space - Exercise 28.5 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 28 Straight Line in Space
Exercise 28.5 | Q 6 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.


Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).


Show that the lines `(x-5)/7 = (y + 2)/(-5) = z/1` and `x/1 = y/2 = z/3` are perpendicular to each other.


Find the equation of a line parallel to x-axis and passing through the origin.


Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).


Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are  \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\]  Also, reduce the equation obtained in vector form.


Find the direction cosines of the line  \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\]  Also, reduce it to vector form. 


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1). 


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]

 


Find the equation of the line passing through the point (2, −1, 3) and parallel to the line  \[\overrightarrow{r} = \left( \hat{i} - 2 \hat{j} + \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} - 5 \hat{k} \right) .\]


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.


A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D


Find the foot of perpendicular from the point (2, 3, 4) to the line \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\] Also, find the perpendicular distance from the given point to the line.


Find the length of the perpendicular drawn from the point (5, 4, −1) to the line \[\overrightarrow{r} = \hat{i}  + \lambda\left( 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \right) .\]


Find the foot of the perpendicular drawn from the point  \[\hat{i} + 6 \hat{j} + 3 \hat{k} \]  to the line  \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k}  \right) .\]  Also, find the length of the perpendicular


Find the equation of the perpendicular drawn from the point P (−1, 3, 2) to the line  \[\overrightarrow{r} = \left( 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + \hat{j} + 3 \hat{k}  \right) .\]  Also, find the coordinates of the foot of the perpendicular from P.


Find the foot of the perpendicular from (0, 2, 7) on the line \[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2} .\]


Find the foot of the perpendicular from (1, 2, −3) to the line \[\frac{x + 1}{2} = \frac{y - 3}{- 2} = \frac{z}{- 1} .\]


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


Find the shortest distance between the following pairs of lines whose cartesian equations are:  \[\frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} \text{ and } \frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1}\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} - \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \overrightarrow{r} = \left( 4 \hat{i} - \hat{k}  \right) + \mu\left( 2 \hat{i}  + 3 \hat{k} \right)\] 


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]


Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]


Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.

 

Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.

 

Write the value of λ for which the lines  \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\]  are perpendicular to each other.


Find the Cartesian equations of the line which passes through the point (−2, 4 , −5) and is parallel to the line \[\frac{x + 3}{3} = \frac{4 - y}{5} = \frac{z + 8}{6} .\]


The lines `x/1 = y/2 = z/3 and (x - 1)/-2 = (y - 2)/-4 = (z - 3)/-6` are


The direction ratios of the line perpendicular to the lines \[\frac{x - 7}{2} = \frac{y + 17}{- 3} = \frac{z - 6}{1} \text{ and }, \frac{x + 5}{1} = \frac{y + 3}{2} = \frac{z - 4}{- 2}\] are proportional to


The direction ratios of the line x − y + z − 5 = 0 = x − 3y − 6 are proportional to

 

 


The equation of the line passing through the points \[a_1 \hat{i}  + a_2 \hat{j}  + a_3 \hat{k}  \text{ and }  b_1 \hat{i} + b_2 \hat{j}  + b_3 \hat{k} \]  is 


If a line makes angles α, β and γ with the axes respectively, then cos 2 α + cos 2 β + cos 2 γ =


The shortest distance between the lines  \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\] 

 

 

 

 


Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`


If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then


The lines `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` and `(x - 3)/1 = (y - k)/2 = z/1` intersect each other at point


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×