मराठी

Find the Foot of the Perpendicular from (0, 2, 7) on the Line X + 2 − 1 = Y − 1 3 = Z − 3 − 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the foot of the perpendicular from (0, 2, 7) on the line \[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2} .\]

बेरीज

उत्तर

Let L be the foot of the perpendicular drawn from the point (0, 2, 7) to the given line.
The coordinates of a general point on the line  \[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2}\]  are given by 

\[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2} = \lambda\]

\[ \Rightarrow x = - \lambda - 2\]

\[ y = 3\lambda + 1 \]

\[ z = - 2\lambda + 3\] 

Let the coordinates of L be   \[\left( - \lambda - 2, 3\lambda + 1, - 2\lambda + 3 \right)\]

 

The direction ratios of PL are proportional to \[- \lambda - 2 - 0, 3\lambda + 1 - 2, - 2\lambda + 3 - 7, i . e . - \lambda - 2, 3\lambda - 1, - 2\lambda - 4\] 

The direction ratios of the given line are proportional to -1,3,-2,  but PL is perpendicular to the given line. 

\[\therefore - 1\left( - \lambda - 2 \right) + 3\left( 3\lambda - 1 \right) - 2\left( - 2\lambda - 4 \right) = 0\]

\[ \Rightarrow \lambda = - \frac{1}{2}\] 

Substituting  \[\lambda = - \frac{1}{2}\] in  \[\left( - \lambda - 2, 3\lambda + 1, - 2\lambda + 3 \right)\] 

we get the coordinates of L as \[\left( - \frac{3}{2}, - \frac{1}{2}, 4 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Straight Line in Space - Exercise 28.4 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 28 Straight Line in Space
Exercise 28.4 | Q 10 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.

 


Find the separate equations of the lines represented by the equation 3x2 – 10xy – 8y2 = 0.


The Cartestation equation of  line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.


Show that the three lines with direction cosines `12/13, (-3)/13, (-4)/13;  4/13, 12/13, 3/13;  3/13, (-4)/13, 12/13 ` are mutually perpendicular.


Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the equation of a line parallel to x-axis and passing through the origin.


Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\] 


Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2. 


If the coordinates of the points ABCD be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD


Find the value of λ so that the following lines are perpendicular to each other. \[\frac{x - 5}{5\lambda + 2} = \frac{2 - y}{5} = \frac{1 - z}{- 1}, \frac{x}{1} = \frac{2y + 1}{4\lambda} = \frac{1 - z}{- 3}\]


Show that the lines  \[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} \text{          and         } \frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4}\] intersect and find their point of intersection. 


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Determine whether the following pair of lines intersect or not:  

\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 3 \hat{i} + 5 \hat{j} + 7 \hat{k} \right) + \lambda\left( \hat{i} - 2 \hat{j} + 7 \hat{k} \right) \text{ and } \overrightarrow{r} = - \hat{i} - \hat{j} - \hat{k}  + \mu\left( 7 \hat{i}  - 6 \hat{j}  + \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 1 - t \right) \hat{i} + \left( t - 2 \right) \hat{j} + \left( 3 - t \right) \hat{k}  \text{ and }  \overrightarrow{r} = \left( s + 1 \right) \hat{i}  + \left( 2s - 1 \right) \hat{j}  - \left( 2s + 1 \right) \hat{k} \]


Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 8 + 3\lambda \right) \hat{i} - \left( 9 + 16\lambda \right) \hat{j} + \left( 10 + 7\lambda \right) \hat{k} \]\[\overrightarrow{r} = 15 \hat{i} + 29 \hat{j} + 5 \hat{k} + \mu\left( 3 \hat{i}  + 8 \hat{j} - 5 \hat{k}  \right)\]


Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{- 1} = \frac{y + 2}{1} = \frac{z - 3}{- 2} \text{ and } \frac{x - 1}{1} = \frac{y + 1}{2} = \frac{z + 1}{- 2}\]


Find the shortest distance between the following pairs of parallel lines whose equations are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = - 4 \hat{i}  - \hat{k}  + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k}  \right)\]


Write the cartesian and vector equations of X-axis.

 

Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.

 

The cartesian equations of a line AB are  \[\frac{2x - 1}{\sqrt{3}} = \frac{y + 2}{2} = \frac{z - 3}{3} .\]   Find the direction cosines of a line parallel to AB


Write the vector equation of a line given by \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]

 


The equations of a line are given by \[\frac{4 - x}{3} = \frac{y + 3}{3} = \frac{z + 2}{6} .\]  Write the direction cosines of a line parallel to this line.


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


The angle between the straight lines \[\frac{x + 1}{2} = \frac{y - 2}{5} = \frac{z + 3}{4} and \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z - 3}{- 3}\] is


The direction ratios of the line x − y + z − 5 = 0 = x − 3y − 6 are proportional to

 

 


The straight line \[\frac{x - 3}{3} = \frac{y - 2}{1} = \frac{z - 1}{0}\] is


The shortest distance between the lines  \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\] 

 

 

 

 


Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.


The equation 4x2 + 4xy + y2 = 0 represents two ______ 


The distance of the point (4, 3, 8) from the Y-axis is ______.


Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.


Find the vector equation of the lines passing through the point having position vector `(-hati - hatj + 2hatk)` and parallel to the line `vecr = (hati + 2hatj + 3hatk) + λ(3hati + 2hatj + hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×