Advertisements
Advertisements
प्रश्न
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
उत्तर
\[2 \tan^{- 1} \left( \cos\theta \right) = \tan^{- 1} \left( 2cosec\theta \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2\cos\theta}{1 - \cos^2 \theta} \right) = \tan^{- 1} \left( 2cosec\theta \right) \left[ 2 \tan^{- 1} x = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \right]\]
\[ \Rightarrow \frac{2\cos\theta}{1 - \cos^2 \theta} = 2cosec\theta\]
\[ \Rightarrow \frac{\cos\theta}{1 - \cos^2 \theta} = \frac{1}{\sin\theta}\]
\[ \Rightarrow 1 - \cos^2 \theta = \sin\theta\cos\theta\]
\[ \Rightarrow \sec^2 \theta - 1 = \tan\theta \left[ \text { Dividing both sides by } \cos^2 \theta \right]\]
\[ \Rightarrow 1 + \tan^2 \theta - 1 = \tan\theta\]
\[ \Rightarrow \tan^2 \theta - \tan\theta = 0\]
\[ \Rightarrow \tan\theta\left( \tan\theta - 1 \right) = 0\]
\[ \Rightarrow \tan\theta = 0 or \tan\theta - 1 = 0\]
\[ \Rightarrow \tan\theta = 0 or \tan\theta = 1\]
\[ \Rightarrow \theta = 0 or \theta = \frac{\pi}{4}\]
It is given that θ ≠ 0
\[\therefore \theta = \frac{\pi}{4}\]
Thus, the value of θ is \[\frac{\pi}{4}\] .
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin4)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
The value of sin `["cos"^-1 (7/25)]` is ____________.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`