मराठी

If 2 Tan−1 (Cos θ) = Tan−1 (2 Cosec θ), (θ ≠ 0), Then Find the Value of θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.

उत्तर

\[2 \tan^{- 1} \left( \cos\theta \right) = \tan^{- 1} \left( 2cosec\theta \right)\]

\[ \Rightarrow \tan^{- 1} \left( \frac{2\cos\theta}{1 - \cos^2 \theta} \right) = \tan^{- 1} \left( 2cosec\theta \right) \left[ 2 \tan^{- 1} x = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \right]\]

\[ \Rightarrow \frac{2\cos\theta}{1 - \cos^2 \theta} = 2cosec\theta\]

\[ \Rightarrow \frac{\cos\theta}{1 - \cos^2 \theta} = \frac{1}{\sin\theta}\]

\[ \Rightarrow 1 - \cos^2 \theta = \sin\theta\cos\theta\]

\[ \Rightarrow \sec^2 \theta - 1 = \tan\theta \left[ \text { Dividing both sides by } \cos^2 \theta \right]\]

\[ \Rightarrow 1 + \tan^2 \theta - 1 = \tan\theta\]

\[ \Rightarrow \tan^2 \theta - \tan\theta = 0\]

\[ \Rightarrow \tan\theta\left( \tan\theta - 1 \right) = 0\]

\[ \Rightarrow \tan\theta = 0 or \tan\theta - 1 = 0\]

\[ \Rightarrow \tan\theta = 0 or \tan\theta = 1\]

\[ \Rightarrow \theta = 0 or \theta = \frac{\pi}{4}\]

It is given that θ ≠ 0

\[\therefore \theta = \frac{\pi}{4}\]

Thus, the value of θ is \[\frac{\pi}{4}\] .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Foreign Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write the value of `tan(2tan^(-1)(1/5))`


 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin4)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


The value of sin `["cos"^-1 (7/25)]` is ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×