Advertisements
Advertisements
प्रश्न
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
उत्तर
Let x = sin θ
Now,
`sin^-1{(x+sqrt(1-x^2))/sqrt2}=sin^-1{(sintheta+sqrt(1-sin^2theta))/sqrt2}`
`=sin^-1{(sintheta+costheta)/sqrt2}`
`=sin^-1{1/sqrt2sintheta+1/sqrt2costheta}`
`=sin^-1{cos pi/4sintheta+sin pi/4costheta}`
`=sin^-1{sin(theta+pi/4)}`
`=theta+pi/4`
`=pi/4+sin^-1x`
`thereforesin^-1{(x+sqrt(1-x^2))/sqrt2}=cos^-1x+pi/4`
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate the following:
`tan(cos^-1 8/17)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]