मराठी

Write the Following in the Simplest Form: `Sin^-1{(X+Sqrt(1-x^2))/Sqrt2},-1<X<1` - Mathematics

Advertisements
Advertisements

प्रश्न

Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`

उत्तर

Let x = sin θ

Now,

`sin^-1{(x+sqrt(1-x^2))/sqrt2}=sin^-1{(sintheta+sqrt(1-sin^2theta))/sqrt2}`

`=sin^-1{(sintheta+costheta)/sqrt2}`

`=sin^-1{1/sqrt2sintheta+1/sqrt2costheta}`

`=sin^-1{cos  pi/4sintheta+sin  pi/4costheta}`

`=sin^-1{sin(theta+pi/4)}`

`=theta+pi/4`

`=pi/4+sin^-1x`

`thereforesin^-1{(x+sqrt(1-x^2))/sqrt2}=cos^-1x+pi/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 7.08 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate the following:

`tan(cos^-1  8/17)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×