Advertisements
Advertisements
प्रश्न
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
उत्तर
`sin(tan^-1x+tan^-1 1/x)=sin[tan^-1(-x)+tan^-1(-1/x)]` `[thereforex<0]`
`=sin[-tan^-1(x)-tan^-1(1/x)]`
`=sin{-[tan^-1(x)+tan^-1(1/x)]}`
`=sin[-(tan^-1x+cot^-1x)]` `[thereforetan^-1 1/x=cot^-1x]`
`=-sin(tan^-1x+cot^-1x)`
`=-sin(pi/2)` `[thereforetan^-1x+cot^-1x=pi/2]`
= -1
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate:
`cosec{cot^-1(-12/5)}`
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
What is the principal value of `sin^-1(-sqrt3/2)?`
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
If sin−1 x − cos−1 x = `pi/6` , then x =
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the domain of `sec^(-1) x-tan^(-1)x`