मराठी

Solve the Following: `Sin^-1x+Sin^-1 2x=Pi/3` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following:

`sin^-1x+sin^-1  2x=pi/3`

उत्तर

We know

`sin^-1x+sin^-1y=sin^-1[xsqrt(1-y^2)+ysqrt(1-x^2)]`

∴ `sin^-1x+sin^-1  2x=pi/3`

⇒ `sin^-1x+sin^-1  2x=sin^-1(sqrt3/2)`

⇒ `sin^-1x-sin^-1(sqrt3/2)=-sin^-1  2x`

⇒ `sin^-1[xsqrt(1-3/4)+sqrt3/2sqrt(1-x^2)]=-sin^-1  2x`

⇒ `sin^-1[x/2+sqrt3/2sqrt(1-x^2)]=sin^-1(-2x)`

⇒ `x/2+sqrt3/2sqrt(1-x^2)=-2x`

⇒ `x+sqrt3sqrt(1-x^2)=-4x`

⇒ `5x=-sqrt3sqrt(1-x^2)`

Squaring both the sides,

`25x^2=3-3x^2`

⇒ `28x^2=3`

⇒ `x=+-1/2sqrt(3/7)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.12 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.12 | Q 3.1 | पृष्ठ ८९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


`sin^-1(sin  (5pi)/6)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin12)`


`sin^-1(sin2)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of cos−1 (cos 1540°).


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


If tan−1 (cot θ) = 2 θ, then θ =

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×