Advertisements
Advertisements
प्रश्न
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
उत्तर
We know
`sin^-1x+sin^-1y=sin^-1[xsqrt(1-y^2)+ysqrt(1-x^2)]`
∴ `sin^-1x+sin^-1 2x=pi/3`
⇒ `sin^-1x+sin^-1 2x=sin^-1(sqrt3/2)`
⇒ `sin^-1x-sin^-1(sqrt3/2)=-sin^-1 2x`
⇒ `sin^-1[xsqrt(1-3/4)+sqrt3/2sqrt(1-x^2)]=-sin^-1 2x`
⇒ `sin^-1[x/2+sqrt3/2sqrt(1-x^2)]=sin^-1(-2x)`
⇒ `x/2+sqrt3/2sqrt(1-x^2)=-2x`
⇒ `x+sqrt3sqrt(1-x^2)=-4x`
⇒ `5x=-sqrt3sqrt(1-x^2)`
Squaring both the sides,
`25x^2=3-3x^2`
⇒ `28x^2=3`
⇒ `x=+-1/2sqrt(3/7)`
APPEARS IN
संबंधित प्रश्न
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
`sin^-1(sin (5pi)/6)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin12)`
`sin^-1(sin2)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`cot(tan^-1a+cot^-1a)`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos−1 (cos 1540°).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If tan−1 (cot θ) = 2 θ, then θ =
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
tanx is periodic with period ____________.