Advertisements
Advertisements
प्रश्न
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
उत्तर
We know that
\[\cos^{- 1} x = 2 \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}}\]
\[ \tan^{- 1} x = \sin^{- 1} \frac{x}{\sqrt{1 + x^2}}\]
\[\therefore \sin\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right) = \sin\left( \frac{1}{2}2 \tan^{- 1} \sqrt{\frac{1 - \frac{4}{5}}{1 + \frac{4}{5}}} \right)\]
\[ = \sin\left( \tan^{- 1} \sqrt{\frac{\frac{1}{5}}{\frac{9}{5}}} \right)\]
\[ = \sin\left( \tan^{- 1} \frac{1}{3} \right)\]
\[ = \sin\left\{ \sin^{- 1} \left( \frac{\frac{1}{3}}{\sqrt{1 + \frac{1}{9}}} \right) \right\}\]
\[ = \sin\left( \sin^{- 1} \frac{1}{\sqrt{10}} \right)\]
\[ = \frac{1}{\sqrt{10}} \left[ \because \sin\left( \sin^{- 1} x \right) = x \right]\]
∴ \[\sin\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right) = \frac{1}{\sqrt{10}}\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`tan(cos^-1 8/17)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`