मराठी

The Number of Solutions of the Equation Tan − 1 2 X + Tan − 1 3 X = π 4 is (A) 2 (B) 3 (C) 1 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 

पर्याय

  • 2

  • 3

  • 1

  • none of these

MCQ

उत्तर

(a) 2
We know that
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
\[\therefore \tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2x + 3x}{1 - 2x \times 3x} \right) = \frac{\pi}{4}\]
\[ \Rightarrow \frac{2x + 3x}{1 - 2x \times 3x} = \tan\frac{\pi}{4}\]
\[ \Rightarrow \frac{5x}{1 - 6 x^2} = 1 \]
\[ \Rightarrow 5x = 1 - 6 x^2 \]
\[ \Rightarrow 6 x^2 + 5x - 1 = 0\]

Therefore, there are two solutions.

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 8 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If sin−1 − cos−1 x = `pi/6` , then x = 


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×